A. Cooper, Alan Smith, G. Rishworth, Carla Dodd, M. Forbes, H. Cawthra, C. Anderson
{"title":"Microbialites of modern siliciclastic rock coasts","authors":"A. Cooper, Alan Smith, G. Rishworth, Carla Dodd, M. Forbes, H. Cawthra, C. Anderson","doi":"10.2110/jsr.2021.071","DOIUrl":null,"url":null,"abstract":"Contemporary microbialite formation has been documented on rock coasts in a variety of geomorphic, oceanographic, and climatic settings. Based on a synthesis of these diverse occurrences plus new observations, a generalized model is presented. At each locality microbialite development is associated with discharge of mineralized freshwater in the coastal zone. Microbialite formation in the high intertidal and supratidal zones of rock coasts occurs in a variety of sub-environments (cliff face, shore platform surface, platform surface pools, boulder beach, and sand beach) and forms a variety of laminated rock encrustations and oncoids. Allochthonous microbialites occur on the backshore as breccias of reworked microbialite clasts, oncoids transported from rock pools, and partly encrusted boulders. The microbialite-influenced rock coast is a distinct type of siliciclastic environment that offers potential comparison for ancient microbialite occurrences. It has preservation potential in both transgressive and regressive settings. Potential ancient examples are suggested.","PeriodicalId":17044,"journal":{"name":"Journal of Sedimentary Research","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sedimentary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/jsr.2021.071","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Contemporary microbialite formation has been documented on rock coasts in a variety of geomorphic, oceanographic, and climatic settings. Based on a synthesis of these diverse occurrences plus new observations, a generalized model is presented. At each locality microbialite development is associated with discharge of mineralized freshwater in the coastal zone. Microbialite formation in the high intertidal and supratidal zones of rock coasts occurs in a variety of sub-environments (cliff face, shore platform surface, platform surface pools, boulder beach, and sand beach) and forms a variety of laminated rock encrustations and oncoids. Allochthonous microbialites occur on the backshore as breccias of reworked microbialite clasts, oncoids transported from rock pools, and partly encrusted boulders. The microbialite-influenced rock coast is a distinct type of siliciclastic environment that offers potential comparison for ancient microbialite occurrences. It has preservation potential in both transgressive and regressive settings. Potential ancient examples are suggested.
期刊介绍:
The journal is broad and international in scope and welcomes contributions that further the fundamental understanding of sedimentary processes, the origin of sedimentary deposits, the workings of sedimentary systems, and the records of earth history contained within sedimentary rocks.