{"title":"Bio-carbonization of Reactive Magnesia for Sandy Soil Solidification","authors":"Jiancai Yan, Huaxun Wu, Yamin Ding, Jiahua Fan","doi":"10.1080/01490451.2023.2204855","DOIUrl":null,"url":null,"abstract":"Abstract Bio-carbonization of reactive magnesia (r-MgO) is a new technology for sandy soil solidification. In this study, two sets of tests were conducted to investigate the influence of r-MgO contents on the bio-solidification effects of sandy soils, with the analysis of the unconfined compressive strength (UCS), permeability coefficient, sonic time value, and precipitation content. The relationship between r-MgO contents and solidification effects with a single treatment cycle was studied in the first sand solidification test. Then, the second sand solidification test was further conducted until their permeability coefficient reached about 10−6 cm/s to determine the maximum treatment cycle under various r-MgO contents. The results showed that the UCS, permeation resistance, and carbonate precipitation content were positively related to the r-MgO content if the solidification treatment was applied only once, while the sonic time value showed an opposite trend. Moreover, the maximum treatment cycle obtained under various r-MgO contents varied greatly. A high dosage of r-MgO could clearly reduce the maximum number of treatment cycles of the sand column, especially the r-MgO content larger than 15%. Decreased treatment cycle reduced carbonate precipitations in the sand column and decreased the UCS by over 40%. There was a close relationship between UCS and average carbonate precipitation contents for the bio-carbonated sand columns with the only one treatment cycles. However, the UCS of sand columns with multiple treatment cycles varied greatly within a similar average precipitation content. The results of this study lay a solid foundation for applying bio-carbonization of r-MgO in sandy soil solidification.","PeriodicalId":12647,"journal":{"name":"Geomicrobiology Journal","volume":"40 1","pages":"519 - 526"},"PeriodicalIF":2.2000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomicrobiology Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01490451.2023.2204855","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Bio-carbonization of reactive magnesia (r-MgO) is a new technology for sandy soil solidification. In this study, two sets of tests were conducted to investigate the influence of r-MgO contents on the bio-solidification effects of sandy soils, with the analysis of the unconfined compressive strength (UCS), permeability coefficient, sonic time value, and precipitation content. The relationship between r-MgO contents and solidification effects with a single treatment cycle was studied in the first sand solidification test. Then, the second sand solidification test was further conducted until their permeability coefficient reached about 10−6 cm/s to determine the maximum treatment cycle under various r-MgO contents. The results showed that the UCS, permeation resistance, and carbonate precipitation content were positively related to the r-MgO content if the solidification treatment was applied only once, while the sonic time value showed an opposite trend. Moreover, the maximum treatment cycle obtained under various r-MgO contents varied greatly. A high dosage of r-MgO could clearly reduce the maximum number of treatment cycles of the sand column, especially the r-MgO content larger than 15%. Decreased treatment cycle reduced carbonate precipitations in the sand column and decreased the UCS by over 40%. There was a close relationship between UCS and average carbonate precipitation contents for the bio-carbonated sand columns with the only one treatment cycles. However, the UCS of sand columns with multiple treatment cycles varied greatly within a similar average precipitation content. The results of this study lay a solid foundation for applying bio-carbonization of r-MgO in sandy soil solidification.
期刊介绍:
Geomicrobiology Journal is a unified vehicle for research and review articles in geomicrobiology and microbial biogeochemistry. One or two special issues devoted to specific geomicrobiological topics are published each year. General articles deal with microbial transformations of geologically important minerals and elements, including those that occur in marine and freshwater environments, soils, mineral deposits and rock formations, and the environmental biogeochemical impact of these transformations. In this context, the functions of Bacteria and Archaea, yeasts, filamentous fungi, micro-algae, protists, and their viruses as geochemical agents are examined.
Articles may stress the nature of specific geologically important microorganisms and their activities, or the environmental and geological consequences of geomicrobiological activity.
The Journal covers an array of topics such as:
microbial weathering;
microbial roles in the formation and degradation of specific minerals;
mineralization of organic matter;
petroleum microbiology;
subsurface microbiology;
biofilm form and function, and other interfacial phenomena of geological importance;
biogeochemical cycling of elements;
isotopic fractionation;
paleomicrobiology.
Applied topics such as bioleaching microbiology, geomicrobiological prospecting, and groundwater pollution microbiology are addressed. New methods and techniques applied in geomicrobiological studies are also considered.