Yixin Wang, Emmanuel Tapia-Brito, James Riffat, Ziwei Chen, Fatang Jiang, S. Riffat
{"title":"Investigation on the Efficient Removal of Particulate Matter (PM) with Biomass-Based Aerogel","authors":"Yixin Wang, Emmanuel Tapia-Brito, James Riffat, Ziwei Chen, Fatang Jiang, S. Riffat","doi":"10.5334/fce.131","DOIUrl":null,"url":null,"abstract":"Biomass-based aerogel is a new promising environmentally friendly filter material to remove fine particle matter and minimize air pollution. This study aims to investigate the air filtration properties of biomass-based aerogels via tests in a transparent chamber and verification in a real room with a burning smudge stick as a the particle source. The biomass-based aerogel used in this study is made of polysaccharides, protein and waste agricultural by-product (wheat straw). The addition of wheat straw contributes to the increase of surface area and complexity of the biomass-based aerogel pore structure. Compared with other commonly used commercial filtration materials including high-efficiency particulate air (HEPA) filter, surgical mask, regular cloth and silica aerogel, biomass-based aerogel K0.9G1.8S3.6WS1.8 shows excellent performance to remove PM 2.5 (99.50%) and PM 10 (99.40%) from the environment. When using the biomass-based aerogel, the filter core sample has a smaller volume and simpler structure than HEPA to achieve the similar filtration performance. The filtration performance of the biomass-based aerogels has been verified with a real room test. The current work demonstrates the high potential of biomass-based aerogels for infiltration application in different fields and provides an avenue to reuse agricultural by-products.","PeriodicalId":36755,"journal":{"name":"Future Cities and Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Cities and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/fce.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
Biomass-based aerogel is a new promising environmentally friendly filter material to remove fine particle matter and minimize air pollution. This study aims to investigate the air filtration properties of biomass-based aerogels via tests in a transparent chamber and verification in a real room with a burning smudge stick as a the particle source. The biomass-based aerogel used in this study is made of polysaccharides, protein and waste agricultural by-product (wheat straw). The addition of wheat straw contributes to the increase of surface area and complexity of the biomass-based aerogel pore structure. Compared with other commonly used commercial filtration materials including high-efficiency particulate air (HEPA) filter, surgical mask, regular cloth and silica aerogel, biomass-based aerogel K0.9G1.8S3.6WS1.8 shows excellent performance to remove PM 2.5 (99.50%) and PM 10 (99.40%) from the environment. When using the biomass-based aerogel, the filter core sample has a smaller volume and simpler structure than HEPA to achieve the similar filtration performance. The filtration performance of the biomass-based aerogels has been verified with a real room test. The current work demonstrates the high potential of biomass-based aerogels for infiltration application in different fields and provides an avenue to reuse agricultural by-products.