Directed assembly of barium titanate nanopeapods via solvothermal processing with a mixed surfactant system

IF 2.8 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Experimental Nanoscience Pub Date : 2021-01-01 DOI:10.1080/17458080.2021.1962006
Alexis A. Blanco, Jennifer A. Webb, Rebecca R. DiMarco, J. Wiley
{"title":"Directed assembly of barium titanate nanopeapods via solvothermal processing with a mixed surfactant system","authors":"Alexis A. Blanco, Jennifer A. Webb, Rebecca R. DiMarco, J. Wiley","doi":"10.1080/17458080.2021.1962006","DOIUrl":null,"url":null,"abstract":"Abstract Barium titanate (BaTiO3) peapod nanocomposites were prepared by the controlled capture of nanoparticles (NPs) in scrolling hexaniobate (HNB) nanosheets. BaTiO3 NPs and proton-exchanged potassium hexaniobate were treated solvothermally at 220 °C for 6 h in toluene to produce linear NP chains confined within multiwalled HNB nanoscrolls. This method consistently produced nanopeapods with average filling fractions greater than 70%. The controlled introduction of nanocomponents along with a combination of oleylamine and oleic acid surfactants was critical to the success of these reactions. The ability to form BaTiO3@HNB significantly expands the number of important peapod composites accessible by the controlled NP capture.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"16 1","pages":"265 - 277"},"PeriodicalIF":2.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17458080.2021.1962006","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Barium titanate (BaTiO3) peapod nanocomposites were prepared by the controlled capture of nanoparticles (NPs) in scrolling hexaniobate (HNB) nanosheets. BaTiO3 NPs and proton-exchanged potassium hexaniobate were treated solvothermally at 220 °C for 6 h in toluene to produce linear NP chains confined within multiwalled HNB nanoscrolls. This method consistently produced nanopeapods with average filling fractions greater than 70%. The controlled introduction of nanocomponents along with a combination of oleylamine and oleic acid surfactants was critical to the success of these reactions. The ability to form BaTiO3@HNB significantly expands the number of important peapod composites accessible by the controlled NP capture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用混合表面活性剂体系溶剂热法定向组装钛酸钡纳米足
摘要通过在滚屏己酸盐(HNB)纳米片上控制捕获纳米颗粒(NPs),制备了钛酸钡(BaTiO3)豆荚纳米复合材料。BaTiO3 NPs和质子交换的己酸钾在甲苯中220°C溶剂热处理6小时,得到了限制在多壁HNB纳米卷内的线性NP链。该方法制备的纳米脚平均填充分数大于70%。纳米组分的可控引入以及油胺和油酸表面活性剂的组合对这些反应的成功至关重要。形成BaTiO3@HNB的能力大大增加了通过控制NP捕获可获得的重要豆荚复合材料的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Nanoscience
Journal of Experimental Nanoscience 工程技术-材料科学:综合
CiteScore
4.10
自引率
25.00%
发文量
39
审稿时长
6.5 months
期刊介绍: Journal of Experimental Nanoscience, an international and multidisciplinary journal, provides a showcase for advances in the experimental sciences underlying nanotechnology and nanomaterials. The journal exists to bring together the most significant papers making original contributions to nanoscience in a range of fields including biology and biochemistry, physics, chemistry, chemical, electrical and mechanical engineering, materials, pharmaceuticals and medicine. The aim is to provide a forum in which cross fertilization between application areas, methodologies, disciplines, as well as academic and industrial researchers can take place and new developments can be encouraged.
期刊最新文献
Inhibition of restenosis after balloon injury in rabbit vessels by integrin αvβ3-targeted 10058-F4 nanoparticles Enhancing structural and optical properties of titanium dioxide nanoparticles (TiO2 NPs) incorporating with indium tin oxide nanoparticles (ITO NPs): effects of annealing temperature Alginate-wrapped NiO-ZnO nanocomposites-based catalysts for water treatment Evolution of the precursor structure during the preparation of the nanopowders with perovskite-type LnLn’O3 (Ln, Ln’ = REE) complex oxide phase in the La2O3-Lu2O3-Yb2O3 system Statement of Retraction: Image processing algorithm for mechanical properties testing of high temperature materials based on time‐frequency analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1