A. Incarbona, E. Stefano, P. Maiorano, M. Marino, N. Pelosi
{"title":"The response of calcareous nannoplankton to sea surface variability at Ceara Rise during the early Pleistocene glacial-interglacial cycles","authors":"A. Incarbona, E. Stefano, P. Maiorano, M. Marino, N. Pelosi","doi":"10.3301/IJG.2018.22","DOIUrl":null,"url":null,"abstract":"The Ceara Rise lies just beyond the edge of the Amazon River Fan and sediments from this site may record the complex interplay of different climatic systems and processes, including past changes in southern America monsoon activity, Intertropical Convergence Zone setting, different Atlantic Meridional Overturning Circulation (AMOC) strength and phytoplankton blooming triggered by AmazonRiver plumes. Here we investigate early Pleistocene calcareous nannoplankton at Ceara Rise, between about 1150 and 850 kiloyears ago. Our investigation shows abrupt variations in water column dynamics across glacial/interglacial cycles or, even better, linked with different AMOC modes. Dominant placoliths indicate a shallow nutricline that alternate with dominant Florisphaera profunda, pointing to a deep nutricline, respectively during a vigorous flow and slowdown/shutdown of AMOC. The southward displacement of the ITCZ, higher zonal trade wind intensity, more intense and prolonged North Brazilian Current retroflection and the arrival of the nutrientdepleted Glacial North Atlantic Intermediate Water possibly explain thermocline deepening and increased water column stratification during cold phases, with an Antarctic deep water signature on the Ceara Rise seafloor.","PeriodicalId":49317,"journal":{"name":"Italian Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3301/IJG.2018.22","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Ceara Rise lies just beyond the edge of the Amazon River Fan and sediments from this site may record the complex interplay of different climatic systems and processes, including past changes in southern America monsoon activity, Intertropical Convergence Zone setting, different Atlantic Meridional Overturning Circulation (AMOC) strength and phytoplankton blooming triggered by AmazonRiver plumes. Here we investigate early Pleistocene calcareous nannoplankton at Ceara Rise, between about 1150 and 850 kiloyears ago. Our investigation shows abrupt variations in water column dynamics across glacial/interglacial cycles or, even better, linked with different AMOC modes. Dominant placoliths indicate a shallow nutricline that alternate with dominant Florisphaera profunda, pointing to a deep nutricline, respectively during a vigorous flow and slowdown/shutdown of AMOC. The southward displacement of the ITCZ, higher zonal trade wind intensity, more intense and prolonged North Brazilian Current retroflection and the arrival of the nutrientdepleted Glacial North Atlantic Intermediate Water possibly explain thermocline deepening and increased water column stratification during cold phases, with an Antarctic deep water signature on the Ceara Rise seafloor.
期刊介绍:
The Italian Journal of Geosciences (born from the merging of the Bollettino della Società Geologica Italiana and the Bollettino del Servizio Geologico d''Italia) provides an international outlet for the publication of high-quality original research contributions in the broad field of the geosciences.
It publishes research papers, special short papers, review papers, discussion-and-replies for their rapid distribution to the international geosciences community.
The journal is firstly intended to call attention to the Italian territory and the adjacent areas for the exceptional role they play in the understanding of geological processes, in the development of modern geology and the Earth sciences in general.
The main focus of the journal is on the geology of Italy and the surrounding sedimentary basins and landmasses, and on their relationships with the Mediterranean geology and geodynamics. Nevertheless, manuscripts on process-oriented and regional studies concerning any other area of the World are also considered for publication.
Papers on structural geology, stratigraphy, sedimentology, basin analysis, paleontology, ecosystems, paleoceanography, paleoclimatology, planetary sciences, geomorphology, volcanology, mineralogy, geochemistry, petrology, geophysics, geodynamics, hydrogeology, geohazards, marine and engineering geology, modelling of geological process, history of geology, the conservation of the geological heritage, and all related applied sciences are welcome.