Multi-million-year cycles in modelled δ13C as a response to astronomical forcing of organic matter fluxes

Gaëlle Leloup, D. Paillard
{"title":"Multi-million-year cycles in modelled δ13C as a response to astronomical forcing of organic matter fluxes","authors":"Gaëlle Leloup, D. Paillard","doi":"10.5194/esd-14-291-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Along with 400 kyr periodicities, multi-million-year cycles have been found in δ13C records over different time periods. An ∼ 8–9 Myr periodicity is found throughout the Cenozoic and part of the Mesozoic. The robust presence of this periodicity in δ13C records suggests an astronomical origin. However, this periodicity is barely visible in the astronomical forcing. Due to the large fractionation factor of organic matter, its burial or oxidation produces large δ13C variations for moderate carbon variations. Therefore, astronomical forcing of organic matter fluxes is a plausible candidate to explain the oscillations observed in the δ13C records. So far, modelling studies forcing astronomically the organic matter burial have been able to produce 400 kyr and 2.4 Myr cycles in δ13C but were not able to produce longer cycles, such as 8–9 Myr cycles. Here, we propose a mathematical mechanism compatible with the biogeochemistry that could explain the presence of multi-million-year cycles in the δ13C records and their stability over time: a preferential phase locking to multiples of the 2.4 Myr eccentricity period. With a simple non-linear conceptual model for the carbon cycle that has multiple equilibria, we are able to extract longer periods than with a simple linear model – more specifically, multi-million-year periods.\n","PeriodicalId":92775,"journal":{"name":"Earth system dynamics : ESD","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth system dynamics : ESD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-14-291-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Along with 400 kyr periodicities, multi-million-year cycles have been found in δ13C records over different time periods. An ∼ 8–9 Myr periodicity is found throughout the Cenozoic and part of the Mesozoic. The robust presence of this periodicity in δ13C records suggests an astronomical origin. However, this periodicity is barely visible in the astronomical forcing. Due to the large fractionation factor of organic matter, its burial or oxidation produces large δ13C variations for moderate carbon variations. Therefore, astronomical forcing of organic matter fluxes is a plausible candidate to explain the oscillations observed in the δ13C records. So far, modelling studies forcing astronomically the organic matter burial have been able to produce 400 kyr and 2.4 Myr cycles in δ13C but were not able to produce longer cycles, such as 8–9 Myr cycles. Here, we propose a mathematical mechanism compatible with the biogeochemistry that could explain the presence of multi-million-year cycles in the δ13C records and their stability over time: a preferential phase locking to multiples of the 2.4 Myr eccentricity period. With a simple non-linear conceptual model for the carbon cycle that has multiple equilibria, we are able to extract longer periods than with a simple linear model – more specifically, multi-million-year periods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为对有机物通量天文强迫的响应,模拟的δ13C中的数百万年周期
摘要在不同时期的δ13C记录中,除了400 kyr的周期外,还发现了数百万年的周期。整个新生代和部分中生代存在~ 8-9 Myr的周期性。δ13C记录中这种周期性的强劲存在表明其有天文起源。然而,这种周期性在天文强迫中几乎不可见。由于有机质的分馏因子较大,其埋藏或氧化对中等碳变化产生较大的δ13C变化。因此,有机物通量的天文强迫是解释δ13C记录中观测到的振荡的合理候选。到目前为止,从天文角度强迫有机物埋藏的模拟研究已经能够在δ13C产生400 kyr和2.4 Myr的旋回,但不能产生更长的旋回,如8-9 Myr旋回。在这里,我们提出了一个与生物地球化学相容的数学机制,可以解释δ13C记录中数百万年周期的存在及其随时间的稳定性:优先锁定到2.4 Myr偏心周期的数倍。用一个简单的具有多重平衡的碳循环的非线性概念模型,我们能够提取出比简单的线性模型更长的周期——更具体地说,是几百万年的周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing the estimation of future climate impacts within the United States. Carbon fluxes in spring wheat agroecosystem in India A 20-year satellite-reanalysis-based climatology of extreme precipitation characteristics over the Sinai Peninsula Impacts of anthropogenic water regulation on global riverine dissolved organic carbon transport Working at the limit: a review of thermodynamics and optimality of the Earth system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1