Ouyang Quan, Rui Ma, Zhaoxiang Wu, Guotuan Xu, Zhisheng Wang
{"title":"Adaptive Square-Root Unscented Kalman Filter-Based State-of-Charge Estimation for Lithium-Ion Batteries with Model Parameter Online Identification","authors":"Ouyang Quan, Rui Ma, Zhaoxiang Wu, Guotuan Xu, Zhisheng Wang","doi":"10.3390/EN13184968","DOIUrl":null,"url":null,"abstract":"The state-of-charge (SOC) is a fundamental indicator representing the remaining capacity of lithium-ion batteries, which plays an important role in the battery’s optimized operation. In this paper, the model-based SOC estimation strategy is studied for batteries. However, the battery’s model parameters need to be extracted through cumbersome prior experiments. To remedy such deficiency, a recursive least squares (RLS) algorithm is utilized for model parameter online identification, and an adaptive square-root unscented Kalman filter (SRUKF) is designed to estimate the battery’s SOC. As demonstrated in extensive experimental results, the designed adaptive SRUKF combined with RLS-based model identification is a promising SOC estimation approach. Compared with other commonly used Kalman filter-based methods, the proposed algorithm has higher precision in the SOC estimation.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/EN13184968","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/EN13184968","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 23
Abstract
The state-of-charge (SOC) is a fundamental indicator representing the remaining capacity of lithium-ion batteries, which plays an important role in the battery’s optimized operation. In this paper, the model-based SOC estimation strategy is studied for batteries. However, the battery’s model parameters need to be extracted through cumbersome prior experiments. To remedy such deficiency, a recursive least squares (RLS) algorithm is utilized for model parameter online identification, and an adaptive square-root unscented Kalman filter (SRUKF) is designed to estimate the battery’s SOC. As demonstrated in extensive experimental results, the designed adaptive SRUKF combined with RLS-based model identification is a promising SOC estimation approach. Compared with other commonly used Kalman filter-based methods, the proposed algorithm has higher precision in the SOC estimation.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.