Assessment of the ballistic impact response of Cor-Tuf UHPC concrete using the HJC constitutive model

IF 2.1 Q2 ENGINEERING, CIVIL International Journal of Protective Structures Pub Date : 2023-02-28 DOI:10.1177/20414196231160235
R. Perkins, C. Duncan, Daniel Johnson, T. Stone, J. Sherburn, M. Chandler, Robert Moser, B. Paliwal, R. Prabhu, Y. Hammi
{"title":"Assessment of the ballistic impact response of Cor-Tuf UHPC concrete using the HJC constitutive model","authors":"R. Perkins, C. Duncan, Daniel Johnson, T. Stone, J. Sherburn, M. Chandler, Robert Moser, B. Paliwal, R. Prabhu, Y. Hammi","doi":"10.1177/20414196231160235","DOIUrl":null,"url":null,"abstract":"Concrete offers superior strength in compressive loadings and is implemented for many applications. The high compressive strengths enable concrete to resist high strain rate loading scenarios such as ballistic impacts. A variety of concrete denoted as Cor-Tuf, which is classified as ultra-high-performance concrete with a compressive strength of 210 MPa, is evaluated in this study. The response of this concrete is assessed through a finite element analysis under the high strain rate loadings of ballistic impacts. To capture the response of the concrete, a plasticity and damage constitutive model denoted as the HJC model is implemented. The parameters of this model are calibrated to the Cor-Tuf concrete using confined compression experiments, unconfined compression experiments, and shock experiments. The concrete target is impacted at speeds between 610 m/s through 1112 m/s, and the results are compared to existing experimental data. Our results show that the HJC model can predict the response of this impact to the Cor-Tuf concrete targets as an average error of 5.85% is found. The results of this study present parameters which can be implemented with the HJC concrete model for future studies to model the response of the Cor-Tuf UHPC.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Protective Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20414196231160235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Concrete offers superior strength in compressive loadings and is implemented for many applications. The high compressive strengths enable concrete to resist high strain rate loading scenarios such as ballistic impacts. A variety of concrete denoted as Cor-Tuf, which is classified as ultra-high-performance concrete with a compressive strength of 210 MPa, is evaluated in this study. The response of this concrete is assessed through a finite element analysis under the high strain rate loadings of ballistic impacts. To capture the response of the concrete, a plasticity and damage constitutive model denoted as the HJC model is implemented. The parameters of this model are calibrated to the Cor-Tuf concrete using confined compression experiments, unconfined compression experiments, and shock experiments. The concrete target is impacted at speeds between 610 m/s through 1112 m/s, and the results are compared to existing experimental data. Our results show that the HJC model can predict the response of this impact to the Cor-Tuf concrete targets as an average error of 5.85% is found. The results of this study present parameters which can be implemented with the HJC concrete model for future studies to model the response of the Cor-Tuf UHPC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用HJC本构模型评价co - tuf超高性能混凝土的弹道冲击响应
混凝土在抗压载荷中提供优越的强度,并在许多应用中实现。高抗压强度使混凝土能够抵抗高应变率加载场景,如弹道冲击。本研究对多种抗压强度为210 MPa的高性能混凝土进行了评价,代号为Cor-Tuf。通过有限元分析评估了该混凝土在弹道冲击高应变率载荷下的响应。为了捕捉混凝土的响应,实现了一种称为HJC模型的塑性和损伤本构模型。通过侧限压缩实验、无侧限压缩实验和冲击实验,对模型参数进行了标定。以610 ~ 1112 m/s的速度冲击混凝土目标,并与已有实验数据进行了对比。结果表明,HJC模型可以较好地预测这种冲击对混凝土目标的响应,平均误差为5.85%。本研究的结果提供了可以用HJC混凝土模型实现的参数,为未来的研究模拟co - tuf UHPC的响应提供了参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
25.00%
发文量
48
期刊最新文献
Investigating the significance of non-ideal effects in large-scale blast propagation A high explosive blast simulator Pounding response of concrete rods with rough impacting surfaces Airblast observations and near-field modeling of the large surface explosion coupling experiment Development of a fast-running method for prediction of blast propagation in partially confined spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1