Accuracy of Various Methods to Estimate Volume and Weight of Symmetrical and Non-Symmetrical Fruits using Computer Vision

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of ICT Research and Applications Pub Date : 2022-12-27 DOI:10.5614/itbj.ict.res.appl.2022.16.3.2
Hurriyatul Fitriyah
{"title":"Accuracy of Various Methods to Estimate Volume and Weight of Symmetrical and Non-Symmetrical Fruits using Computer Vision","authors":"Hurriyatul Fitriyah","doi":"10.5614/itbj.ict.res.appl.2022.16.3.2","DOIUrl":null,"url":null,"abstract":"Many researchers have used images to measure the volume and weight of fruits so that the measurement can be done remotely and non-contact. There are various methods for fruit volume estimation based on images, i.e., Basic Shape, Solid of Revolution, Conical Frustum, and Regression. The weight estimation generally uses Regression. This study analyzed the accuracy of these methods. Tests were done by taking images of symmetrical fruits (represented by tangerines) and non-symmetrical fruits (represented by strawberries). The images were processed using segmentation in saturation color space to get binary images. The Regression method used Diameter, Projection Area, and Perimeter as features that were extracted from the binary images. For symmetrical fruits, the best accuracy was obtained with the Linear Regression based on Diameter (LDD), which gave the highest R2 (0.96 for volume and 0.93 for weight) and the lowest RMSE (5.7 mm3 for volume and 5.3 gram for volume). For non-symmetrical fruits, the highest accuracy for non-symmetric fruits was given by the Linear Regression based on Diameter (LRD) and Linear Regression based on Area (LRA) with an R2 of 0.8 for volume and weight. The RMSE for LRD and LRA for strawberries was 3.3 mm3 for volume and 1.4 grams for weight.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2022.16.3.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Many researchers have used images to measure the volume and weight of fruits so that the measurement can be done remotely and non-contact. There are various methods for fruit volume estimation based on images, i.e., Basic Shape, Solid of Revolution, Conical Frustum, and Regression. The weight estimation generally uses Regression. This study analyzed the accuracy of these methods. Tests were done by taking images of symmetrical fruits (represented by tangerines) and non-symmetrical fruits (represented by strawberries). The images were processed using segmentation in saturation color space to get binary images. The Regression method used Diameter, Projection Area, and Perimeter as features that were extracted from the binary images. For symmetrical fruits, the best accuracy was obtained with the Linear Regression based on Diameter (LDD), which gave the highest R2 (0.96 for volume and 0.93 for weight) and the lowest RMSE (5.7 mm3 for volume and 5.3 gram for volume). For non-symmetrical fruits, the highest accuracy for non-symmetric fruits was given by the Linear Regression based on Diameter (LRD) and Linear Regression based on Area (LRA) with an R2 of 0.8 for volume and weight. The RMSE for LRD and LRA for strawberries was 3.3 mm3 for volume and 1.4 grams for weight.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用计算机视觉估计对称和非对称水果体积和重量的各种方法的准确性
许多研究人员使用图像来测量水果的体积和重量,以便可以远程和非接触地进行测量。基于图像的水果体积估计方法有基本形状(Basic Shape)、旋转固体(Solid of Revolution)、圆锥截体(Conical Frustum)和回归(Regression)等。权重估计一般采用回归方法。本研究分析了这些方法的准确性。通过拍摄对称水果(以橘子为代表)和非对称水果(以草莓为代表)的图像来完成测试。在饱和色彩空间中对图像进行分割,得到二值图像。回归方法使用直径、投影面积和周长作为从二值图像中提取的特征。对于对称型果实,基于直径(LDD)的线性回归精度最高,R2最高(体积为0.96,重量为0.93),RMSE最低(体积为5.7 mm3, 5.3 g)。对于非对称水果,基于直径的线性回归(LRD)和基于面积的线性回归(LRA)对非对称水果的精度最高,体积和重量的R2均为0.8。草莓的LRD和LRA的RMSE分别为3.3 mm3体积和1.4 g重量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of ICT Research and Applications
Journal of ICT Research and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.60
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊介绍: Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Smart Card-based Access Control System using Isolated Many-to-Many Authentication Scheme for Electric Vehicle Charging Stations The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs Machine Learning-based Early Detection and Prognosis of the Covid-19 Pandemic Improving Robustness Using MixUp and CutMix Augmentation for Corn Leaf Diseases Classification based on ConvMixer Architecture Generative Adversarial Networks Based Scene Generation on Indian Driving Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1