An overview of the natural force density method and its implementation on an efficient parametric computational framework

IF 1.1 Q4 MECHANICS Curved and Layered Structures Pub Date : 2021-01-01 DOI:10.1515/cls-2021-0005
Márcio S. de Souza, R. M. Pauletti
{"title":"An overview of the natural force density method and its implementation on an efficient parametric computational framework","authors":"Márcio S. de Souza, R. M. Pauletti","doi":"10.1515/cls-2021-0005","DOIUrl":null,"url":null,"abstract":"Abstract The new paradigms of parametric modelling have been proving promising on the advance of systems for analysis and design of taut (or tensile) structures. With this premise, the presented work consist on the development with a form-finding tool for Computer Aided Design(CAE) and Computer Aided Engineering (CAE) integration using VPL (Visual Programming Language), in the context of parametric modelling. The methods used in the implementation are the Force Density Method (FDM) and the Natural Force Density Method (NFDM), taking advantage of the linear solution approach provided, suitable for fast form-finding computational procedures. The program is implemented as a Grasshopper plug-in and it is named BATS (Basic Analysis of Taut Structures), which enables parametric definition of boundary conditions for the form-finding. The program structure and benchmarks with other available Grasshopper plug-ins for taut structures form-finding are presented, showing considerably superior performance using BATS.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"8 1","pages":"47 - 60"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cls-2021-0005","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2021-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The new paradigms of parametric modelling have been proving promising on the advance of systems for analysis and design of taut (or tensile) structures. With this premise, the presented work consist on the development with a form-finding tool for Computer Aided Design(CAE) and Computer Aided Engineering (CAE) integration using VPL (Visual Programming Language), in the context of parametric modelling. The methods used in the implementation are the Force Density Method (FDM) and the Natural Force Density Method (NFDM), taking advantage of the linear solution approach provided, suitable for fast form-finding computational procedures. The program is implemented as a Grasshopper plug-in and it is named BATS (Basic Analysis of Taut Structures), which enables parametric definition of boundary conditions for the form-finding. The program structure and benchmarks with other available Grasshopper plug-ins for taut structures form-finding are presented, showing considerably superior performance using BATS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概述了自然力密度法及其在高效参数化计算框架上的实现
摘要参数建模的新范式在拉紧(或拉伸)结构的分析和设计系统的发展中被证明是有前景的。在这一前提下,所提出的工作包括在参数化建模的背景下,使用VPL(可视化编程语言)开发用于计算机辅助设计(CAE)和计算机辅助工程(CAE)集成的形式设计工具。在实现中使用的方法是力密度法(FDM)和自然力密度方法(NFDM),利用所提供的线性求解方法,适用于快速找形计算程序。该程序是作为Grasshopper插件实现的,它被命名为BATS(Taut结构的基本分析),它可以为形状查找定义边界条件的参数。介绍了用于张紧结构找形的程序结构和其他可用Grasshopper插件的基准测试,表明使用BATS具有相当优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
13.30%
发文量
25
审稿时长
14 weeks
期刊介绍: The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.
期刊最新文献
Flutter investigation and deep learning prediction of FG composite wing reinforced with carbon nanotube Structural assessment of 40 ft mini LNG ISO tank: Effect of structural frame design on the strength performance MD-based study on the deformation process of engineered Ni–Al core–shell nanowires: Toward an understanding underlying deformation mechanisms Studying the effect of embedded length strength of concrete and diameter of anchor on shear performance between old and new concrete Thin-walled cylindrical shells in engineering designs and critical infrastructures: A systematic review based on the loading response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1