Huiling Yuan, Yong Zhou, Zhiyuan Zhang, Xiangyu Cui
{"title":"Volatility analysis for the GARCH-Itô model with option data","authors":"Huiling Yuan, Yong Zhou, Zhiyuan Zhang, Xiangyu Cui","doi":"10.1002/cjs.11746","DOIUrl":null,"url":null,"abstract":"<p>Low-frequency historical data, high-frequency historical data, and option data are three primary sources that can be used to forecast an underlying security's volatility. In this article, we propose an explicit model integrating the three information sources. Instead of directly using option price data, we extract option-implied volatility from option data and estimate its dynamics. We provide joint quasimaximum likelihood estimators for the parameters and establish their asymptotic properties. Real data examples demonstrate that the proposed model has better out-of-sample volatility forecasting performance than other popular volatility models.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 1","pages":"237-270"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11746","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Low-frequency historical data, high-frequency historical data, and option data are three primary sources that can be used to forecast an underlying security's volatility. In this article, we propose an explicit model integrating the three information sources. Instead of directly using option price data, we extract option-implied volatility from option data and estimate its dynamics. We provide joint quasimaximum likelihood estimators for the parameters and establish their asymptotic properties. Real data examples demonstrate that the proposed model has better out-of-sample volatility forecasting performance than other popular volatility models.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.