A review of recent advances in empirical likelihood

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2022-09-20 DOI:10.1002/wics.1599
Pang-Chi Liu, Yichuan Zhao
{"title":"A review of recent advances in empirical likelihood","authors":"Pang-Chi Liu, Yichuan Zhao","doi":"10.1002/wics.1599","DOIUrl":null,"url":null,"abstract":"Empirical likelihood is widely used in many statistical problems. In this article, we provide a review of the empirical likelihood method, due to its significant development in recent years. Since the introduction of empirical likelihood, variants of empirical likelihood have been proposed, and the applications of empirical likelihood in high dimensions have also been studied. It is necessary to summarize the new development of empirical likelihood. In this article, we give a review of the Bayesian empirical likelihood, the bias‐corrected empirical likelihood, the jackknife empirical likelihood, the adjusted empirical likelihood, the extended empirical likelihood, the transformed empirical likelihood, the mean empirical likelihood, and the empirical likelihood with high dimensions. Finally, we have a brief survey of the computation and implementation for empirical likelihood methods.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1599","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

Abstract

Empirical likelihood is widely used in many statistical problems. In this article, we provide a review of the empirical likelihood method, due to its significant development in recent years. Since the introduction of empirical likelihood, variants of empirical likelihood have been proposed, and the applications of empirical likelihood in high dimensions have also been studied. It is necessary to summarize the new development of empirical likelihood. In this article, we give a review of the Bayesian empirical likelihood, the bias‐corrected empirical likelihood, the jackknife empirical likelihood, the adjusted empirical likelihood, the extended empirical likelihood, the transformed empirical likelihood, the mean empirical likelihood, and the empirical likelihood with high dimensions. Finally, we have a brief survey of the computation and implementation for empirical likelihood methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对经验可能性的最新进展的回顾
经验似然在许多统计问题中得到广泛应用。在本文中,我们提供了一个回顾的经验似然方法,由于它的重大发展,近年来。自经验似然引入以来,人们提出了经验似然的变体,并研究了经验似然在高维中的应用。总结经验似然的新发展是必要的。在本文中,我们回顾了贝叶斯经验似然、偏差校正经验似然、折刀经验似然、调整经验似然、扩展经验似然、转换经验似然、平均经验似然和高维经验似然。最后,简要介绍了经验似然方法的计算和实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1