{"title":"Performance evaluation of HiPIMS, S3p and CAE deposited coatings during dry turning of Dss2205","authors":"G. Sonawane, V. Sargade","doi":"10.1080/10910344.2022.2129981","DOIUrl":null,"url":null,"abstract":"Abstract The present study is an extension of our previous work. Performance evaluation of single-layer AlTiN coating deposited by Scalable Pulse Power Plasma (S3p) and High Power Impulse Magnetron Sputtering (HiPIMS), with multi-layer TiN/TiAlN and AlTiN/TiAlN coating deposited by Cathodic Arc Evaporation (CAE) is carried out. Taguchi’s full factorial design with L9 orthogonal array was used for machining. AlTiN (S3p) coating exhibited a tool life of 111 min, 1.5 times as much as AlTiN (HiPIMS) coating. Multi-layer coatings could not offer comparable performance with single-layer coatings. Among the multi-layer coatings’ tools having the top layer of Al performed better. Surface roughness exhibited by AlTiN (S3p) tool was 1.2 µm compared to 1.8 µm by AlTiN (HiPIMS) tools. The rate of reduction of cutting force for AlTiN (HiPIMS) and AlTiN (S3p) tools was found to be 5% and 11%, respectively. Multi-layer TiN/TiAlN-coated tool exhibited 2.5 times higher surface roughness compared to single-layer AlTiCrN coated tool. Empirical models showed predictability of 5% and 20% for cutting force and surface roughness respectively. The higher predictability range for surface roughness is due to influence of both cutting speed and feed. The developed models can be used for selection among AlTiN (S3p) and AlTiN (HiPIMS) coated tools.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2022.2129981","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract The present study is an extension of our previous work. Performance evaluation of single-layer AlTiN coating deposited by Scalable Pulse Power Plasma (S3p) and High Power Impulse Magnetron Sputtering (HiPIMS), with multi-layer TiN/TiAlN and AlTiN/TiAlN coating deposited by Cathodic Arc Evaporation (CAE) is carried out. Taguchi’s full factorial design with L9 orthogonal array was used for machining. AlTiN (S3p) coating exhibited a tool life of 111 min, 1.5 times as much as AlTiN (HiPIMS) coating. Multi-layer coatings could not offer comparable performance with single-layer coatings. Among the multi-layer coatings’ tools having the top layer of Al performed better. Surface roughness exhibited by AlTiN (S3p) tool was 1.2 µm compared to 1.8 µm by AlTiN (HiPIMS) tools. The rate of reduction of cutting force for AlTiN (HiPIMS) and AlTiN (S3p) tools was found to be 5% and 11%, respectively. Multi-layer TiN/TiAlN-coated tool exhibited 2.5 times higher surface roughness compared to single-layer AlTiCrN coated tool. Empirical models showed predictability of 5% and 20% for cutting force and surface roughness respectively. The higher predictability range for surface roughness is due to influence of both cutting speed and feed. The developed models can be used for selection among AlTiN (S3p) and AlTiN (HiPIMS) coated tools.
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining