Evaluation of drag coefficient for a quadrotor model

IF 1.5 4区 工程技术 Q2 ENGINEERING, AEROSPACE International Journal of Micro Air Vehicles Pub Date : 2023-01-01 DOI:10.1177/17568293221148378
G. Hattenberger, M. Bronz, Jean-Philippe Condomines
{"title":"Evaluation of drag coefficient for a quadrotor model","authors":"G. Hattenberger, M. Bronz, Jean-Philippe Condomines","doi":"10.1177/17568293221148378","DOIUrl":null,"url":null,"abstract":"This paper focuses on the quadrotor drag coefficient model and its estimation from flight tests. Precise assessment of such a model permits the use of a quadrotor as a sensor for wind estimation purposes without the need for additional onboard sensors. Firstly, the drag coefficient has been estimated in a controlled environment via wind generator and motion capture system. Later, the evolution of the coefficient is observed for various mass and fuselage shapes. Finally, an estimation method is proposed, based on the least-squares optimization, that evaluates the drag of the quadrotor directly from outdoor flight data. The latter leads the methodology towards easier adoption in other researchers’ systems without the need for complex and expensive flight testing facilities. The accuracy of the proposed method is presented both in simulation, based on a realistic flight dynamics model, and also for real outdoor flights.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293221148378","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 4

Abstract

This paper focuses on the quadrotor drag coefficient model and its estimation from flight tests. Precise assessment of such a model permits the use of a quadrotor as a sensor for wind estimation purposes without the need for additional onboard sensors. Firstly, the drag coefficient has been estimated in a controlled environment via wind generator and motion capture system. Later, the evolution of the coefficient is observed for various mass and fuselage shapes. Finally, an estimation method is proposed, based on the least-squares optimization, that evaluates the drag of the quadrotor directly from outdoor flight data. The latter leads the methodology towards easier adoption in other researchers’ systems without the need for complex and expensive flight testing facilities. The accuracy of the proposed method is presented both in simulation, based on a realistic flight dynamics model, and also for real outdoor flights.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四旋翼模型的阻力系数评估
本文重点研究了四旋翼飞行器的阻力系数模型及其在飞行试验中的估计。这种模型的精确评估允许使用四旋翼作为风估计目的的传感器,而不需要额外的机载传感器。首先,通过风力发电机和运动捕捉系统估算了受控环境下的阻力系数。随后,观察了不同质量和机身形状下系数的演变。最后,提出了一种基于最小二乘优化的四旋翼飞行器阻力估计方法,该方法直接从室外飞行数据中评估四旋翼飞行器的阻力。后者使方法论更容易在其他研究人员的系统中采用,而不需要复杂和昂贵的飞行测试设施。在基于真实飞行动力学模型的仿真中,以及在真实的室外飞行中,都证明了该方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
13
审稿时长
>12 weeks
期刊介绍: The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.
期刊最新文献
Corrigendum to “Exploring tandem wing UAS designs for operation in turbulent urban environments” Incremental coverage path planning method for UAV ground mapping in unknown area Development of a tube-launched tail-sitter unmanned aerial vehicle Parameter effect on the novel swashplateless rotor control Co-TS: Design and Implementation of a 2-UAV Cooperative Transportation System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1