A cross-validation-based statistical theory for point processes

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2023-06-27 DOI:10.1093/biomet/asad041
O. Cronie, M. Moradi, C. Biscio
{"title":"A cross-validation-based statistical theory for point processes","authors":"O. Cronie, M. Moradi, C. Biscio","doi":"10.1093/biomet/asad041","DOIUrl":null,"url":null,"abstract":"\n Motivated by cross-validation’s general ability to reduce overfitting and mean square error, we develop a cross-validation-based statistical theory for general point processes. It is based on the combination of two novel concepts for general point processes: cross-validation and prediction errors. Our cross-validation approach uses thinning to split a point process/pattern into pairs of training and validation sets, while our prediction errors measure discrepancy between two point processes. The new statistical approach, which may be used to model different distributional characteristics, exploits the prediction errors to measure how well a given model predicts validation sets using associated training sets. Having indicated that our new framework generalizes many existing statistical approaches, we then establish different theoretical properties for it, including large sample properties. We further recognize that non-parametric intensity estimation is an instance of Papangelou conditional intensity estimation, which we exploit to apply our new statistical theory to kernel intensity estimation. Using independent thinning-based cross-validation, we numerically show that the new approach substantially outperforms the state of the art in bandwidth selection. Finally, we carry out intensity estimation for a dataset in forestry (Euclidean domain) and a dataset in neurology (linear network).","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asad041","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by cross-validation’s general ability to reduce overfitting and mean square error, we develop a cross-validation-based statistical theory for general point processes. It is based on the combination of two novel concepts for general point processes: cross-validation and prediction errors. Our cross-validation approach uses thinning to split a point process/pattern into pairs of training and validation sets, while our prediction errors measure discrepancy between two point processes. The new statistical approach, which may be used to model different distributional characteristics, exploits the prediction errors to measure how well a given model predicts validation sets using associated training sets. Having indicated that our new framework generalizes many existing statistical approaches, we then establish different theoretical properties for it, including large sample properties. We further recognize that non-parametric intensity estimation is an instance of Papangelou conditional intensity estimation, which we exploit to apply our new statistical theory to kernel intensity estimation. Using independent thinning-based cross-validation, we numerically show that the new approach substantially outperforms the state of the art in bandwidth selection. Finally, we carry out intensity estimation for a dataset in forestry (Euclidean domain) and a dataset in neurology (linear network).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于交叉验证的点过程统计理论
受交叉验证减少过拟合和均方误差的一般能力的启发,我们为一般点过程开发了一种基于交叉验证的统计理论。它基于通用点过程的两个新概念的组合:交叉验证和预测误差。我们的交叉验证方法使用细化将点过程/模式划分为成对的训练集和验证集,而我们的预测误差测量两点过程之间的差异。新的统计方法可用于对不同的分布特征进行建模,利用预测误差来衡量给定模型使用相关训练集预测验证集的效果。在指出我们的新框架概括了许多现有的统计方法后,我们为它建立了不同的理论性质,包括大样本性质。我们进一步认识到,非参数强度估计是Papangelou条件强度估计的一个例子,我们利用它将我们的新统计理论应用于核强度估计。使用基于独立稀疏的交叉验证,我们在数值上表明,新方法在带宽选择方面显著优于现有技术。最后,我们对林业数据集(欧几里得域)和神经病学数据集(线性网络)进行了强度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Robust Covariate-Balancing Method in Learning Optimal Individualized Treatment Regimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1