Membrane condenser as emerging technology for water recovery and gas pre-treatment: current status and perspectives

Adele Brunetti, Francesca Macedonio, Giuseppe Barbieri, Enrico Drioli
{"title":"Membrane condenser as emerging technology for water recovery and gas pre-treatment: current status and perspectives","authors":"Adele Brunetti,&nbsp;Francesca Macedonio,&nbsp;Giuseppe Barbieri,&nbsp;Enrico Drioli","doi":"10.1186/s42480-019-0020-x","DOIUrl":null,"url":null,"abstract":"<p>The recent roadmap of SPIRE initiative includes the development of “new separation, extraction and pre-treatment technologies” as one of the “key actions” for boosting sustainability, enhancing the availability and quality of existing resources. Membrane condenser is an innovative technology that was recently investigated for the recovery of water vapor for waste gaseous streams, such as flue gas, biogas, cooling tower plumes, etc. Recently, it has been also proposed as pre-treatment unit for the reduction and control of contaminants in waste gaseous streams (SO<sub>x</sub> and NO<sub>x</sub>, VOCs, H<sub>2</sub>S, NH<sub>3</sub>, siloxanes, halides, particulates, organic pollutants).</p><p>This perspective article reports recent progresses in the applications of the membrane condenser in the treatment of various gaseous streams for water recovery and contaminant control. After an overview of the operating principle, the membranes used, and the main results achieved, the work also proposes the role of this technology as pre-treatment stage to other separation technologies. The potentialities of the technology are also discussed aspiring to pave the way towards the development of an innovative technology where membrane condenser can cover a key role in redesigning the whole upgrading process.</p>","PeriodicalId":495,"journal":{"name":"BMC Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":2.3500,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42480-019-0020-x","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s42480-019-0020-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The recent roadmap of SPIRE initiative includes the development of “new separation, extraction and pre-treatment technologies” as one of the “key actions” for boosting sustainability, enhancing the availability and quality of existing resources. Membrane condenser is an innovative technology that was recently investigated for the recovery of water vapor for waste gaseous streams, such as flue gas, biogas, cooling tower plumes, etc. Recently, it has been also proposed as pre-treatment unit for the reduction and control of contaminants in waste gaseous streams (SOx and NOx, VOCs, H2S, NH3, siloxanes, halides, particulates, organic pollutants).

This perspective article reports recent progresses in the applications of the membrane condenser in the treatment of various gaseous streams for water recovery and contaminant control. After an overview of the operating principle, the membranes used, and the main results achieved, the work also proposes the role of this technology as pre-treatment stage to other separation technologies. The potentialities of the technology are also discussed aspiring to pave the way towards the development of an innovative technology where membrane condenser can cover a key role in redesigning the whole upgrading process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膜冷凝器作为一种新兴的水回收与气前处理技术:现状与展望
SPIRE倡议的最新路线图包括开发“新的分离、提取和预处理技术”,作为促进可持续性、提高现有资源的可用性和质量的“关键行动”之一。膜式冷凝器是近年来研究的一项创新技术,用于回收烟气、沼气、冷却塔羽流等废气流的水蒸气。近年来,它也被提出作为减少和控制废气流中污染物(SOx和NOx、VOCs、H2S、NH3、硅氧烷、卤化物、颗粒物、有机污染物)的预处理单元。本文综述了膜式冷凝器在各种气体处理中的应用进展,用于水回收和污染物控制。在概述了该技术的工作原理、使用的膜和取得的主要结果之后,本工作还提出了该技术作为其他分离技术的预处理阶段的作用。本文还讨论了该技术的潜力,以期为开发一种创新技术铺平道路,在这种技术中,膜冷凝器可以在重新设计整个升级过程中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematic design of separation process for bioethanol production from corn stover Enhancing the lubricity of gas-to-liquid (GTL) paraffinic kerosene: impact of the additives on the physicochemical properties Resource recovery and waste-to-energy from wastewater sludge via thermochemical conversion technologies in support of circular economy: a comprehensive review Hard-threshold neural network-based prediction of organic synthetic outcomes Dynamic modeling of heat exchanger tube rupture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1