{"title":"Missing information imputation for disease-dedicated social networks with heterogeneous auxiliary data","authors":"Xu Liu, Jingrui He, Wanli Min, Hongxia Yang","doi":"10.1080/24725579.2020.1716115","DOIUrl":null,"url":null,"abstract":"Abstract Many high impact applications suffer from missing information. For example, disease-dedicated social networks provide additional resources to glimpse into patients’ daily life related to disease management. However, due to the voluntary nature of such social networks, the information reported by patients is often incomplete, making the following data analytics tasks particularly challenging. On the other hand, in addition to the target data that we aim to analyze, we may also have other related data at our disposal. For example, to analyze disease-dedicated social networks, auxiliary clinical data (with potentially non-overlapping patients), as well as the users’ online social relationship might provide additional information for estimating the missing information. Therefore, the key question we aim to answer in this paper is how we can leverage the heterogeneous auxiliary data for the sake of missing information imputation. To answer this question, we focus on diabetes-dedicated social networks, and we aim to estimate the missing information from patients’ self-reported biomarker measurements. In particular, we propose a hypergraph structure to model the relationship among users and user-generated content (posts). Based on the hypergraph structure, we further introduce an optimization framework to estimate the missing biomarker measurements using heterogeneous auxiliary data. To solve the optimization framework, we design iterative algorithms to find the local optimal solution. Experimental results on both synthetic and real data sets (including a data set collected from a diabetes-dedicated social network) demonstrate the effectiveness of the proposed algorithms.","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"10 1","pages":"87 - 98"},"PeriodicalIF":1.5000,"publicationDate":"2020-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24725579.2020.1716115","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2020.1716115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Many high impact applications suffer from missing information. For example, disease-dedicated social networks provide additional resources to glimpse into patients’ daily life related to disease management. However, due to the voluntary nature of such social networks, the information reported by patients is often incomplete, making the following data analytics tasks particularly challenging. On the other hand, in addition to the target data that we aim to analyze, we may also have other related data at our disposal. For example, to analyze disease-dedicated social networks, auxiliary clinical data (with potentially non-overlapping patients), as well as the users’ online social relationship might provide additional information for estimating the missing information. Therefore, the key question we aim to answer in this paper is how we can leverage the heterogeneous auxiliary data for the sake of missing information imputation. To answer this question, we focus on diabetes-dedicated social networks, and we aim to estimate the missing information from patients’ self-reported biomarker measurements. In particular, we propose a hypergraph structure to model the relationship among users and user-generated content (posts). Based on the hypergraph structure, we further introduce an optimization framework to estimate the missing biomarker measurements using heterogeneous auxiliary data. To solve the optimization framework, we design iterative algorithms to find the local optimal solution. Experimental results on both synthetic and real data sets (including a data set collected from a diabetes-dedicated social network) demonstrate the effectiveness of the proposed algorithms.
期刊介绍:
IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.