On the quantitative assessment of corrosion damages of aluminum at the early stages using confocal laser scanning microscopy

IF 0.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Letters on Materials Pub Date : 2022-09-01 DOI:10.22226/2410-3535-2022-3-261-265
V. Danilov, D. Merson
{"title":"On the quantitative assessment of corrosion damages of aluminum at the early stages using confocal laser scanning microscopy","authors":"V. Danilov, D. Merson","doi":"10.22226/2410-3535-2022-3-261-265","DOIUrl":null,"url":null,"abstract":"Despite being widely used in such industries as chemical, aviation and food ones, aluminum and its alloys are known to be prone to localized corrosion, and this remains a problem to be solved, especially when it comes to pitting corrosion. Therefore, there is a necessity to detect traces of corrosion at the earliest stages and to quantify the extent of corrosion damage. The simplest solution for assessing the overall corrosion rate is to use the gravimetric method, which, however, does not provide information for assessment of localized corrosion. This paper is devoted to the consideration of the possibilities of using the method of confocal laser scanning microscopy (CLSM) for assessing corrosion resistance using high-purity aluminum. The CLSM method, due to its high resolution (especially along the vertical axis), enables to obtain quantitative data on the volume of corroded metal, determine the depth of corrosion damage including building their profilograms, and analyze the morphology of the surface damaged by corrosion. Owing to the high sensitivity of the CLSM method, corrosion losses were detected within 21 days, contrary to the standard gravimetric method, which failed to determine the loss of metal even after 160 days of corrosion testing.","PeriodicalId":45792,"journal":{"name":"Letters on Materials","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters on Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22226/2410-3535-2022-3-261-265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Despite being widely used in such industries as chemical, aviation and food ones, aluminum and its alloys are known to be prone to localized corrosion, and this remains a problem to be solved, especially when it comes to pitting corrosion. Therefore, there is a necessity to detect traces of corrosion at the earliest stages and to quantify the extent of corrosion damage. The simplest solution for assessing the overall corrosion rate is to use the gravimetric method, which, however, does not provide information for assessment of localized corrosion. This paper is devoted to the consideration of the possibilities of using the method of confocal laser scanning microscopy (CLSM) for assessing corrosion resistance using high-purity aluminum. The CLSM method, due to its high resolution (especially along the vertical axis), enables to obtain quantitative data on the volume of corroded metal, determine the depth of corrosion damage including building their profilograms, and analyze the morphology of the surface damaged by corrosion. Owing to the high sensitivity of the CLSM method, corrosion losses were detected within 21 days, contrary to the standard gravimetric method, which failed to determine the loss of metal even after 160 days of corrosion testing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用激光共聚焦扫描显微技术定量评价铝的早期腐蚀损伤
尽管铝及其合金被广泛应用于化学、航空和食品等行业,但众所周知,铝及其合金容易发生局部腐蚀,这仍然是一个有待解决的问题,尤其是在点蚀方面。因此,有必要在最早阶段检测腐蚀痕迹,并量化腐蚀损伤的程度。评估整体腐蚀速率的最简单解决方案是使用重量法,然而,该方法不能提供评估局部腐蚀的信息。本文致力于考虑使用共聚焦激光扫描显微镜(CLSM)方法评估高纯铝耐腐蚀性的可能性。CLSM方法由于其高分辨率(尤其是沿垂直轴),能够获得腐蚀金属体积的定量数据,确定腐蚀损伤的深度,包括建立其轮廓图,并分析腐蚀损伤表面的形态。由于CLSM方法的高灵敏度,在21天内检测到腐蚀损失,而标准重量法即使在腐蚀测试160天后也无法确定金属损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Letters on Materials
Letters on Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
14.30%
发文量
48
期刊介绍: The aim of "Letters on materials" is to provide a fast publication of short research and review articles on various topics in materials science and related areas of material physics and mechanics. The editorial board sees it''s own task in rapid informing of the readers on the state-of-the-art challenges and achievements in materials science. The editorial board does its best to select high quality papers reporting new scientific results that are of interest for researchers in materials science, physics, and mechanics. "Letters on materials" invites Russian and foreign researches to publish papers in both the Russian and English languages. The scope of the journal covers the following research areas: structure analysis of materials, mechanical and physical properties of materials, production and processing of materials, experimental methods of investigation of materials, theory and computational methods in solid state physics. "Letters on materials" is designed for researchers, engineers, lecturers, and students working in the areas of materials science, mechanical engineering, metal forming, physics, and material mechanics.
期刊最新文献
The effect of oxygen-free MgF2 matrix on the physical properties of (CoFeZr)х(MgF2)100−х nanocomposites Tribological behavior of the electron beam additive manufactured Ti6Al4V-Cu alloy Investigation of the effect of compacting mode parameters of a carbon-aluminum wire preform on the strength of the produced compact Technological properties of sheet titanium alloys VT6 On selection of advanced compositions of flame resistant magnesium alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1