QMC integration errors and quasi-asymptotics

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2020-07-16 DOI:10.1515/mcma-2020-2067
I. Sobol, B. Shukhman
{"title":"QMC integration errors and quasi-asymptotics","authors":"I. Sobol, B. Shukhman","doi":"10.1515/mcma-2020-2067","DOIUrl":null,"url":null,"abstract":"Abstract A crude Monte Carlo (MC) method allows to calculate integrals over a d-dimensional cube. As the number N of integration nodes becomes large, the rate of probable error of the MC method decreases as O ⁢ ( 1 / N ) {O(1/\\sqrt{N})} . The use of quasi-random points instead of random points in the MC algorithm converts it to the quasi-Monte Carlo (QMC) method. The asymptotic error estimate of QMC integration of d-dimensional functions contains a multiplier 1 / N {1/N} . However, the multiplier ( ln ⁡ N ) d {(\\ln N)^{d}} is also a part of the error estimate, which makes it virtually useless. We have proved that, in the general case, the QMC error estimate is not limited to the factor 1 / N {1/N} . However, our numerical experiments show that using quasi-random points of Sobol sequences with N = 2 m {N=2^{m}} with natural m makes the integration error approximately proportional to 1 / N {1/N} . In our numerical experiments, d ≤ 15 {d\\leq 15} , and we used N ≤ 2 40 {N\\leq 2^{40}} points generated by the SOBOLSEQ16384 code published in 2011. In this code, d ≤ 2 14 {d\\leq 2^{14}} and N ≤ 2 63 {N\\leq 2^{63}} .","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"171 - 176"},"PeriodicalIF":0.8000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-2067","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2020-2067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract A crude Monte Carlo (MC) method allows to calculate integrals over a d-dimensional cube. As the number N of integration nodes becomes large, the rate of probable error of the MC method decreases as O ⁢ ( 1 / N ) {O(1/\sqrt{N})} . The use of quasi-random points instead of random points in the MC algorithm converts it to the quasi-Monte Carlo (QMC) method. The asymptotic error estimate of QMC integration of d-dimensional functions contains a multiplier 1 / N {1/N} . However, the multiplier ( ln ⁡ N ) d {(\ln N)^{d}} is also a part of the error estimate, which makes it virtually useless. We have proved that, in the general case, the QMC error estimate is not limited to the factor 1 / N {1/N} . However, our numerical experiments show that using quasi-random points of Sobol sequences with N = 2 m {N=2^{m}} with natural m makes the integration error approximately proportional to 1 / N {1/N} . In our numerical experiments, d ≤ 15 {d\leq 15} , and we used N ≤ 2 40 {N\leq 2^{40}} points generated by the SOBOLSEQ16384 code published in 2011. In this code, d ≤ 2 14 {d\leq 2^{14}} and N ≤ 2 63 {N\leq 2^{63}} .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QMC积分误差与拟渐近性
摘要一种粗略的蒙特卡罗(MC)方法可以计算d维立方体上的积分。随着积分节点的数量N变大,MC方法的可能误差率随着O(1/N){O(1/\sqrt{N})}而降低。在MC算法中使用准随机点而不是随机点将其转换为准蒙特卡罗(QMC)方法。d维函数QMC积分的渐近误差估计包含乘法器1/N{1/N}。然而,乘数(ln⁡ N)d{(\ln N)^{d}}}}也是误差估计的一部分,这使得它实际上毫无用处。我们已经证明,在一般情况下,QMC误差估计不限于因子1/N{1/N}。然而,我们的数值实验表明,使用具有自然m的N=2m{N=2^{m}的Sobol序列的准随机点,使得积分误差近似与1/N{1/N}成比例。在我们的数值实验中,d≤15{d\leq 15},并且我们使用了2011年发布的SOBOLSEQ16384代码生成的N≤2 40{N\leq 2^{40}}点。在该代码中,d≤2 14{d\leq 2^{14}}和N≤2 63{N\leq 2 ^{63}}}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Asymmetric kernel method in the study of strong stability of the PH/M/1 queuing system Random walk on spheres method for solving anisotropic transient diffusion problems and flux calculations Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition On the estimation of periodic signals in the diffusion process using a high-frequency scheme Stochastic simulation of electron transport in a strong electrical field in low-dimensional heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1