Reliability-based assessment of ship hull girder ultimate strength

IF 1.1 Q4 MECHANICS Curved and Layered Structures Pub Date : 2023-01-01 DOI:10.1515/cls-2022-0189
R. Adiputra, T. Yoshikawa, Erwandi Erwandi
{"title":"Reliability-based assessment of ship hull girder ultimate strength","authors":"R. Adiputra, T. Yoshikawa, Erwandi Erwandi","doi":"10.1515/cls-2022-0189","DOIUrl":null,"url":null,"abstract":"Abstract A reliability-based approach is presented to investigate the effects of structural and load uncertainties on the reliability estimation of ship hull girders. Structural uncertainties included randomness in material properties, geometric properties, initial geometric imperfections, and corrosion behavior. Load uncertainties included statistical uncertainties, model uncertainties, environmental uncertainties, and uncertainties related to nonlinearity. The hull girder ultimate strength was calculated using Smith’s method, and the probabilistic density function was evaluated by employing Monte Carlo simulations. In the load estimation, the still water bending moment and wave-induced bending moment were calculated using a simplified formula of the International Association of Classification Societies-Common Structural Rules code and then modified with load parameters. The reliability index was estimated using a first-order reliability method considering the operating time, the duration of the ship in the alternate hold loading condition, and the severity of the corrosion rate. As a result, sagging conditions dominated the collapse mode. The reliability indexes were obtained for the observed cases, and the viability of the ship was assessed accordingly.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract A reliability-based approach is presented to investigate the effects of structural and load uncertainties on the reliability estimation of ship hull girders. Structural uncertainties included randomness in material properties, geometric properties, initial geometric imperfections, and corrosion behavior. Load uncertainties included statistical uncertainties, model uncertainties, environmental uncertainties, and uncertainties related to nonlinearity. The hull girder ultimate strength was calculated using Smith’s method, and the probabilistic density function was evaluated by employing Monte Carlo simulations. In the load estimation, the still water bending moment and wave-induced bending moment were calculated using a simplified formula of the International Association of Classification Societies-Common Structural Rules code and then modified with load parameters. The reliability index was estimated using a first-order reliability method considering the operating time, the duration of the ship in the alternate hold loading condition, and the severity of the corrosion rate. As a result, sagging conditions dominated the collapse mode. The reliability indexes were obtained for the observed cases, and the viability of the ship was assessed accordingly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可靠性的船体梁极限强度评估
摘要提出了一种基于可靠性的方法,研究结构和荷载不确定性对船体大梁可靠性估计的影响。结构不确定性包括材料特性、几何特性、初始几何缺陷和腐蚀行为的随机性。负荷不确定性包括统计不确定性、模型不确定性、环境不确定性和非线性不确定性。采用Smith法计算船体梁的极限强度,采用蒙特卡罗模拟计算概率密度函数。在荷载估计中,采用国际船级社协会通用结构规则的简化公式计算静水弯矩和波浪引起的弯矩,并根据荷载参数进行修正。采用一阶可靠性方法,综合考虑船舶的运行时间、船舶在交替货舱装载状态下的持续时间和腐蚀速率的严重程度,对船舶的可靠性指标进行了估计。结果表明,沉降条件主导坍塌模式。对观测情况进行了可靠性指标分析,并对船舶的生存能力进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
13.30%
发文量
25
审稿时长
14 weeks
期刊介绍: The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.
期刊最新文献
Flutter investigation and deep learning prediction of FG composite wing reinforced with carbon nanotube Structural assessment of 40 ft mini LNG ISO tank: Effect of structural frame design on the strength performance MD-based study on the deformation process of engineered Ni–Al core–shell nanowires: Toward an understanding underlying deformation mechanisms Studying the effect of embedded length strength of concrete and diameter of anchor on shear performance between old and new concrete Thin-walled cylindrical shells in engineering designs and critical infrastructures: A systematic review based on the loading response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1