{"title":"An initial-boundary value problem for the general three-component nonlinear Schrödinger equations on a finite interval","authors":"Zhenya Yan","doi":"10.1093/imamat/hxab007","DOIUrl":null,"url":null,"abstract":"The general three-component nonlinear Schrödinger (gtc-NLS) equations are completely integrable and contain the self-focusing, defocusing and mixed cases, which are applied in many physical fields. In this paper, we would like to use the Fokas method to explore the initial-boundary value (IBV) problem for the gtc-NLS equations with a \n<tex>$4\\times 4$</tex>\n matrix Lax pair on a finite interval based on the inverse scattering transform. The solutions of the gtc-NLS equations can be expressed using the solution of a \n<tex>$4\\times 4$</tex>\n matrix Riemann–Hilbert (RH) problem constructed in the complex \n<tex>$k$</tex>\n-plane. The jump matrices of the RH problem can be explicitly found in terms of three spectral functions related to the initial data, and the Dirichlet–Neumann boundary data, respectively. The global relation between the distinct spectral functions is also proposed to derive two distinct but equivalent types of representations of the Dirichlet–Neumann boundary value problems. Particularly, the relevant formulae for the boundary value problems on the finite interval can generate ones on the half-line as the length of the interval closes to infinity. Finally, we also analyse the linearizable boundary conditions for the Gel'fand–Levitan–Marchenko representation. These results will be useful to further study the solution properties of the IBV problem of the gtc-NLS system by using the Deift–Zhou's nonlinear steepest descent method and some numerical methods.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":"86 1","pages":"427-489"},"PeriodicalIF":1.4000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imamat/hxab007","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514745/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 11
Abstract
The general three-component nonlinear Schrödinger (gtc-NLS) equations are completely integrable and contain the self-focusing, defocusing and mixed cases, which are applied in many physical fields. In this paper, we would like to use the Fokas method to explore the initial-boundary value (IBV) problem for the gtc-NLS equations with a
$4\times 4$
matrix Lax pair on a finite interval based on the inverse scattering transform. The solutions of the gtc-NLS equations can be expressed using the solution of a
$4\times 4$
matrix Riemann–Hilbert (RH) problem constructed in the complex
$k$
-plane. The jump matrices of the RH problem can be explicitly found in terms of three spectral functions related to the initial data, and the Dirichlet–Neumann boundary data, respectively. The global relation between the distinct spectral functions is also proposed to derive two distinct but equivalent types of representations of the Dirichlet–Neumann boundary value problems. Particularly, the relevant formulae for the boundary value problems on the finite interval can generate ones on the half-line as the length of the interval closes to infinity. Finally, we also analyse the linearizable boundary conditions for the Gel'fand–Levitan–Marchenko representation. These results will be useful to further study the solution properties of the IBV problem of the gtc-NLS system by using the Deift–Zhou's nonlinear steepest descent method and some numerical methods.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.