Assessment of polarization and ion recombination correction factors and leakage of small megavoltage photon beams

M. Mohammadi, A. Haghparast, N. Rostampour, Razieh Zaghian, M. Zarsav
{"title":"Assessment of polarization and ion recombination correction factors and leakage of small megavoltage photon beams","authors":"M. Mohammadi, A. Haghparast, N. Rostampour, Razieh Zaghian, M. Zarsav","doi":"10.18869/ACADPUB.IJRR.18.2.219","DOIUrl":null,"url":null,"abstract":"Background: Small field dosimetric challenges lead to a deviation from the reference dosimetry. The aim of this study is to investigate the changes of polarization (kpol) and ion recombination (ks) correction factors and determination of leakage dose in small fields. Materials and Methods: All values were measured on a RW3 slab phantom, at 100 cm Source-to-Surface Distance, 10 cm depth and 6, 10 and 18 MV photon beams for square fields (0.5 to 10 cm). Three ionization chambers (PTW Pinpoint 31014 and 31015, Semiflex 31010) were hired. After the electrometer readout, the correction factors were computed according to the protocol No. 398 of International Atomic Energy Agency's Technical Report (IAEA TRS-398). Results: The kpol (min) and the kpol (max) value occurred in 0.5×0.5 cm 2 and 10×10 cm field size, respectively. Dosimeters with a larger sensitive volume showed greater kpol values. In all three dosimeters, an increasing trend detected in normalized dosimeter reading after working voltage. The level of leakage in all of the values and radiation conditions was at the level of a few Nano colons. Conclusion: The values of kpol and ks in the small fields were different from the reference field. The saturation voltage of the small field dosimeters was greater than the dosimeter working voltage. The leakage values of the dosimeter-electrometer combination in the present study were negligible for all radiation conditions. The correction factors should be considered due to the differences between small fields and reference dosimetric conditions.","PeriodicalId":14498,"journal":{"name":"Iranian Journal of Radiation Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Radiation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/ACADPUB.IJRR.18.2.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Small field dosimetric challenges lead to a deviation from the reference dosimetry. The aim of this study is to investigate the changes of polarization (kpol) and ion recombination (ks) correction factors and determination of leakage dose in small fields. Materials and Methods: All values were measured on a RW3 slab phantom, at 100 cm Source-to-Surface Distance, 10 cm depth and 6, 10 and 18 MV photon beams for square fields (0.5 to 10 cm). Three ionization chambers (PTW Pinpoint 31014 and 31015, Semiflex 31010) were hired. After the electrometer readout, the correction factors were computed according to the protocol No. 398 of International Atomic Energy Agency's Technical Report (IAEA TRS-398). Results: The kpol (min) and the kpol (max) value occurred in 0.5×0.5 cm 2 and 10×10 cm field size, respectively. Dosimeters with a larger sensitive volume showed greater kpol values. In all three dosimeters, an increasing trend detected in normalized dosimeter reading after working voltage. The level of leakage in all of the values and radiation conditions was at the level of a few Nano colons. Conclusion: The values of kpol and ks in the small fields were different from the reference field. The saturation voltage of the small field dosimeters was greater than the dosimeter working voltage. The leakage values of the dosimeter-electrometer combination in the present study were negligible for all radiation conditions. The correction factors should be considered due to the differences between small fields and reference dosimetric conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极化和离子复合校正因子与小兆伏光子束泄漏的评估
背景:小场剂量测定挑战导致偏离参考剂量测定。本研究的目的是研究小电场中极化(kpol)和离子复合(ks)校正因子的变化以及泄漏剂量的确定。材料和方法:所有值均在RW3平板体模上测量,在100 cm源-表面距离、10 cm深度和6、10和18MV光子束的方形场(0.5至10 cm)下。租用了三个电离室(PTW Pinpoint 31014和31015,Semiflex 31010)。静电计读数后,根据国际原子能机构技术报告(IAEA TRS-398)第398号议定书计算校正系数。结果:kpol(min)和kpol(max)分别出现在0.5×0.5cm2和10×10cm的视野中。具有较大敏感体积的剂量计显示出较大的kpol值。在所有三个剂量计中,在工作电压后的归一化剂量计读数中检测到增加趋势。在所有数值和辐射条件下,泄漏水平都在几个纳米克隆的水平。结论:小场中的kpol和ks值与参考场不同。小型场剂量计的饱和电压大于剂量计的工作电压。本研究中剂量计-静电计组合的泄漏值在所有辐射条件下都可以忽略不计。由于小视场和参考剂量测定条件之间的差异,应考虑校正系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Journal of Radiation Research
Iranian Journal of Radiation Research RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
0.67
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Iranian Journal of Radiation Research (IJRR) publishes original scientific research and clinical investigations related to radiation oncology, radiation biology, and Medical and health physics. The clinical studies submitted for publication include experimental studies of combined modality treatment, especially chemoradiotherapy approaches, and relevant innovations in hyperthermia, brachytherapy, high LET irradiation, nuclear medicine, dosimetry, tumor imaging, radiation treatment planning, radiosensitizers, and radioprotectors. All manuscripts must pass stringent peer-review and only papers that are rated of high scientific quality are accepted.
期刊最新文献
How to deal with the relationship between hypoxia and radiotherapy in the hypofractionated radiotherapy era Chemoradiotherapy alone or in combination with Endostar for patients with advanced non-small cell lung cancer: A systematic review and meta-analysis Measurement of exposure to radionuclides (40-K, 226-Ra, and 232-Th) in the oil and gas drilling industry Effects of particle size and weight percentage of heavy metal elements on photon shielding efficiency of reinforced polymer composites Dosimetric evaluation of field-in-field and sliding-window IMRT in endometrium cancer patients with a new approach for the conformity index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1