Permutation entropy of indexed ensembles: quantifying thermalization dynamics

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Physics Complexity Pub Date : 2022-10-27 DOI:10.1088/2632-072X/acd742
A. Aragoneses, A. Kapulkin, Arjendu K. Pattanayak
{"title":"Permutation entropy of indexed ensembles: quantifying thermalization dynamics","authors":"A. Aragoneses, A. Kapulkin, Arjendu K. Pattanayak","doi":"10.1088/2632-072X/acd742","DOIUrl":null,"url":null,"abstract":"We introduce ‘PI-Entropy’ Π(ρ˜) (the Permutation entropy of an Indexed ensemble) to quantify mixing due to complex dynamics for an ensemble ρ of different initial states evolving under identical dynamics. We find that Π(ρ˜) acts as an excellent proxy for the thermodynamic entropy S(ρ) but is much more computationally efficient. We study 1-D and 2D iterative maps and find that Π(ρ˜) dynamics distinguish a variety of system time scales and track global loss of information as the ensemble relaxes to equilibrium. There is a universal S-shaped relaxation to equilibrium for generally chaotic systems, and this relaxation is characterized by a shuffling timescale that correlates with the system’s Lyapunov exponent. For the Chirikov Standard Map, a system with a mixed phase space where the chaos grows with nonlinear kick strength K, we find that for high K, Π(ρ˜) behaves like the uniformly hyperbolic 2D Cat Map. For low K we see periodic behavior with a relaxation envelope resembling those of the chaotic regime, but with frequencies that depend on the size and location of the initial ensemble in the mixed phase space as well as K. We discuss how Π(ρ˜) adapts to experimental work and its general utility in quantifying how complex systems change from a low entropy to a high entropy state.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072X/acd742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce ‘PI-Entropy’ Π(ρ˜) (the Permutation entropy of an Indexed ensemble) to quantify mixing due to complex dynamics for an ensemble ρ of different initial states evolving under identical dynamics. We find that Π(ρ˜) acts as an excellent proxy for the thermodynamic entropy S(ρ) but is much more computationally efficient. We study 1-D and 2D iterative maps and find that Π(ρ˜) dynamics distinguish a variety of system time scales and track global loss of information as the ensemble relaxes to equilibrium. There is a universal S-shaped relaxation to equilibrium for generally chaotic systems, and this relaxation is characterized by a shuffling timescale that correlates with the system’s Lyapunov exponent. For the Chirikov Standard Map, a system with a mixed phase space where the chaos grows with nonlinear kick strength K, we find that for high K, Π(ρ˜) behaves like the uniformly hyperbolic 2D Cat Map. For low K we see periodic behavior with a relaxation envelope resembling those of the chaotic regime, but with frequencies that depend on the size and location of the initial ensemble in the mixed phase space as well as K. We discuss how Π(ρ˜) adapts to experimental work and its general utility in quantifying how complex systems change from a low entropy to a high entropy state.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
索引系综的排列熵:量化热化动力学
我们引入' pi -熵' Π(ρ≈)(索引系综的排列熵)来量化由于在相同动力学下演化的不同初始状态的系综ρ的复杂动力学而引起的混合。我们发现Π(ρ≈)作为热力学熵S(ρ)的极好代理,但计算效率更高。我们研究了1-D和2D迭代映射,发现Π(ρ≈)动力学区分了各种系统时间尺度,并在集成松弛到平衡时跟踪全局信息损失。对于一般混沌系统来说,存在一个普遍的s形松弛到平衡,这种松弛的特征是与系统的李雅普诺夫指数相关的洗牌时间尺度。对于具有混合相空间的Chirikov标准映射,其中混沌以非线性踢脚强度K增长,我们发现对于高K, Π(ρ ~)的行为类似于均匀双曲二维Cat映射。对于低K,我们看到具有类似于混沌制度的松弛包络的周期性行为,但频率取决于混合相空间中初始系综的大小和位置以及K。我们讨论Π(ρ≈)如何适应实验工作及其在量化复杂系统如何从低熵到高熵状态变化中的一般用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
期刊最新文献
Quantifying edge relevance for epidemic spreading via the semi-metric topology of complex networks. Khovanov Laplacian and Khovanov Dirac for knots and links. Time-varying synergy/redundancy dominance in the human cerebral cortex. Persistent Mayer Dirac. Fitness-based growth of directed networks with hierarchy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1