{"title":"A Novel Multi-Domain Adaptation-Based Method for Blast Furnace Anomaly Detection","authors":"Xuewen Xiao, Jiang Zhou, Yunni Xia, Xuheng Gao, Qinglan Peng","doi":"10.4018/ijwsr.326753","DOIUrl":null,"url":null,"abstract":"In the steelmaking process, ensuring stable and reliable furnace plays a vital role for guaranteeing production quality of steel products. Traditional methods for detecting furnace anomalies in blast furnaces rely on operator judgment models built upon expert knowledge that can be limited by human experience. Moreover, data generated in blast furnace ironmaking process can be multidimensional, non-Gaussian distributed, and periodical, which can be easily affected by environmental and human factors and thus resulting in low accuracy of anomaly detection. Therefore, an online intelligent framework for detecting furnace anomalies is in high need. In this paper, the authors propose a novel anomaly detection method based on a furnace condition parameter-characterization model, a mining model of periodic patterns in the ironmaking process, and a multi-domain adaptive anomaly detection algorithm. They conduct extensive numerical analysis based on real-world production datasets as well to evaluate the effectiveness and accuracy of the method.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.326753","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the steelmaking process, ensuring stable and reliable furnace plays a vital role for guaranteeing production quality of steel products. Traditional methods for detecting furnace anomalies in blast furnaces rely on operator judgment models built upon expert knowledge that can be limited by human experience. Moreover, data generated in blast furnace ironmaking process can be multidimensional, non-Gaussian distributed, and periodical, which can be easily affected by environmental and human factors and thus resulting in low accuracy of anomaly detection. Therefore, an online intelligent framework for detecting furnace anomalies is in high need. In this paper, the authors propose a novel anomaly detection method based on a furnace condition parameter-characterization model, a mining model of periodic patterns in the ironmaking process, and a multi-domain adaptive anomaly detection algorithm. They conduct extensive numerical analysis based on real-world production datasets as well to evaluate the effectiveness and accuracy of the method.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.