Magnetic Heating Effect for Quarter-Wave Resonator (QWR) Superconducting Cavities

IF 1.3 Q3 INSTRUMENTS & INSTRUMENTATION Quantum Beam Science Pub Date : 2023-07-03 DOI:10.3390/qubs7030021
H. Kim, Su-in Jeon, Yoochul Jung, Juwan Kim
{"title":"Magnetic Heating Effect for Quarter-Wave Resonator (QWR) Superconducting Cavities","authors":"H. Kim, Su-in Jeon, Yoochul Jung, Juwan Kim","doi":"10.3390/qubs7030021","DOIUrl":null,"url":null,"abstract":"In this paper, the magnetic heating effect of the superconducting quarter-wave resonator (QWR) cavities is investigated, and the Q slopes of the superconducting cavities are measured with an increasing accelerating field. Bardeen–Cooper–Schrieffer (BCS) resistance is calculated for the zero-temperature limit. The vertical test is shown for the performance test of the QWR cavities. The parameters for the QWR cavity are presented. The Q slopes are measured as a function of an accelerating electric field at 4.2 K. The surface resistance of the superconducting cavity increases with an increasing peak magnetic field. The magnetic defects degrade the quality factor. From the magnetic degradation, we determine the magnetic moments of the superconducting cavities. All quarter-wave resonator (QWR) cryomodules are installed in the tunnel, and beam commissioning is performed successfully.","PeriodicalId":31879,"journal":{"name":"Quantum Beam Science","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Beam Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/qubs7030021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the magnetic heating effect of the superconducting quarter-wave resonator (QWR) cavities is investigated, and the Q slopes of the superconducting cavities are measured with an increasing accelerating field. Bardeen–Cooper–Schrieffer (BCS) resistance is calculated for the zero-temperature limit. The vertical test is shown for the performance test of the QWR cavities. The parameters for the QWR cavity are presented. The Q slopes are measured as a function of an accelerating electric field at 4.2 K. The surface resistance of the superconducting cavity increases with an increasing peak magnetic field. The magnetic defects degrade the quality factor. From the magnetic degradation, we determine the magnetic moments of the superconducting cavities. All quarter-wave resonator (QWR) cryomodules are installed in the tunnel, and beam commissioning is performed successfully.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四分之一波谐振器(QWR)超导腔的磁热效应
本文研究了超导四分之一波谐振器(QWR)腔的磁加热效应,并测量了加速场增加时超导腔的Q斜率。Bardeen–Cooper–Schrieffer(BCS)电阻是针对零温度极限计算的。显示了QWR腔的性能测试的垂直测试。给出了QWR腔的参数。Q斜率被测量为4.2K下加速电场的函数。超导腔的表面电阻随着峰值磁场的增加而增加。磁性缺陷降低了品质因数。根据磁退化,我们确定了超导腔的磁矩。所有四分之一波谐振器(QWR)低温模块都安装在隧道中,并成功进行了光束调试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
28.60%
发文量
27
审稿时长
11 weeks
期刊最新文献
A Platform for Laser-Driven Ion Sources Generated with Nanosecond Laser Pulses in the Intensity Range of 1013–1015 W/cm2 Double-Relief Silver Coins Minted in the Greek Colonies (444–390/340–280/270 BC) of Southern Italy Analysed by XRF Stress Measurement of Stainless Steel Piping Welds by Complementary Use of High-Energy Synchrotron X-rays and Neutrons Cable Robots as Conventional Linear Stage Alternatives for the Investigation of Complex-Shaped Objects via Macroscopic X-ray Fluorescence Imaging Chromium–Aluminum Coatings for Oxidation Protection of Titanium–Aluminum Intermetallic Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1