{"title":"Bayesian bandwidth estimation for local linear fitting in nonparametric regression models","authors":"H. Shang, Xibin Zhang","doi":"10.1515/snde-2018-0050","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a Bayesian sampling approach to bandwidth estimation for the local linear estimator of the regression function in a nonparametric regression model. In the Bayesian sampling approach, the error density is approximated by a location-mixture density of Gaussian densities with means the individual errors and variance a constant parameter. This mixture density has the form of a kernel density estimator of errors and is referred to as the kernel-form error density (c.f. Zhang, X., M. L. King, and H. L. Shang. 2014. “A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density.” Computational Statistics & Data Analysis 78: 218–34.). While (Zhang, X., M. L. King, and H. L. Shang. 2014. “A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density.” Computational Statistics & Data Analysis 78: 218–34) use the local constant (also known as the Nadaraya-Watson) estimator to estimate the regression function, we extend this to the local linear estimator, which produces more accurate estimation. The proposed investigation is motivated by the lack of data-driven methods for simultaneously choosing bandwidths in the local linear estimator of the regression function and kernel-form error density. Treating bandwidths as parameters, we derive an approximate (pseudo) likelihood and a posterior. A simulation study shows that the proposed bandwidth estimation outperforms the rule-of-thumb and cross-validation methods under the criterion of integrated squared errors. The proposed bandwidth estimation method is validated through a nonparametric regression model involving firm ownership concentration, and a model involving state-price density estimation.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"26 1","pages":"55 - 71"},"PeriodicalIF":0.7000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/snde-2018-0050","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2018-0050","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract This paper presents a Bayesian sampling approach to bandwidth estimation for the local linear estimator of the regression function in a nonparametric regression model. In the Bayesian sampling approach, the error density is approximated by a location-mixture density of Gaussian densities with means the individual errors and variance a constant parameter. This mixture density has the form of a kernel density estimator of errors and is referred to as the kernel-form error density (c.f. Zhang, X., M. L. King, and H. L. Shang. 2014. “A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density.” Computational Statistics & Data Analysis 78: 218–34.). While (Zhang, X., M. L. King, and H. L. Shang. 2014. “A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density.” Computational Statistics & Data Analysis 78: 218–34) use the local constant (also known as the Nadaraya-Watson) estimator to estimate the regression function, we extend this to the local linear estimator, which produces more accurate estimation. The proposed investigation is motivated by the lack of data-driven methods for simultaneously choosing bandwidths in the local linear estimator of the regression function and kernel-form error density. Treating bandwidths as parameters, we derive an approximate (pseudo) likelihood and a posterior. A simulation study shows that the proposed bandwidth estimation outperforms the rule-of-thumb and cross-validation methods under the criterion of integrated squared errors. The proposed bandwidth estimation method is validated through a nonparametric regression model involving firm ownership concentration, and a model involving state-price density estimation.
期刊介绍:
Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.