Subhas Madavu Salian, Mahuya Bagui, Raksh Vir Jasra
{"title":"Industrially relevant ethylene trimerization catalysts and processes","authors":"Subhas Madavu Salian, Mahuya Bagui, Raksh Vir Jasra","doi":"10.1007/s13203-021-00279-7","DOIUrl":null,"url":null,"abstract":"<div><p>1-Hexene is one of the comonomers used to produce mainly low linear density polyethylene (LLDPE) and high-density polyethylene (HDPE). The production of 1-hexene by ethylene trimerization method gained much interest in petrochemical industry due to its high selectivity towards 1-hexene in comparison to traditional ethylene oligomerization method. In literature, many catalyst systems are reported for ethylene trimerization reaction, but only few of them qualify for the commercial applications. In the present review, activity and selectivity of commercially viable catalyst systems and amount of polyethylene formed as a by-product on using these catalyst systems were discussed. Special attention is given to Chevron Phillips ethylene trimerization technology which is one of the dominant technologies in the production of 1-hexene. The challenges such as fouling issues at commercial plant due to polyethylene by-product formation were discussed and the progress made to overcome the challenges were also discussed. New generation nontoxic titanium catalysts look promising and challenges involved in commercializing these catalysts were presented in the review.</p><h3>Graphic abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 3","pages":"267 - 279"},"PeriodicalIF":0.1250,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13203-021-00279-7.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-021-00279-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
1-Hexene is one of the comonomers used to produce mainly low linear density polyethylene (LLDPE) and high-density polyethylene (HDPE). The production of 1-hexene by ethylene trimerization method gained much interest in petrochemical industry due to its high selectivity towards 1-hexene in comparison to traditional ethylene oligomerization method. In literature, many catalyst systems are reported for ethylene trimerization reaction, but only few of them qualify for the commercial applications. In the present review, activity and selectivity of commercially viable catalyst systems and amount of polyethylene formed as a by-product on using these catalyst systems were discussed. Special attention is given to Chevron Phillips ethylene trimerization technology which is one of the dominant technologies in the production of 1-hexene. The challenges such as fouling issues at commercial plant due to polyethylene by-product formation were discussed and the progress made to overcome the challenges were also discussed. New generation nontoxic titanium catalysts look promising and challenges involved in commercializing these catalysts were presented in the review.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.