Generalized Hierarchical Word Sequence Framework for Language Modeling

Q4 Computer Science Journal of Information Processing Pub Date : 2017-06-15 DOI:10.5715/JNLP.24.395
Xiaoyi Wu, Kevin Duh, Yuji Matsumoto
{"title":"Generalized Hierarchical Word Sequence Framework for Language Modeling","authors":"Xiaoyi Wu, Kevin Duh, Yuji Matsumoto","doi":"10.5715/JNLP.24.395","DOIUrl":null,"url":null,"abstract":"Language modeling is a fundamental research problem that has wide application for many NLP tasks. For estimating probabilities of natural language sentences, most research on language modeling use n-gram based approaches to factor sentence probabilities. However, the assumption under n-gram models is not robust enough to cope with the data sparseness problem, which affects the final performance of language models. In this paper, we propose a generalized hierarchical word sequence framework, where different word association scores can be adopted to rearrange word sequences in a totally unsupervised fashion. Unlike the n-gram which factors sentence probability from left-to-right, our model factors using a more flexible strategy. For evaluation, we compare our rearranged word sequences to normal n-gram word sequences. Both intrinsic and extrinsic experiments verify that our language model can achieve better performance, proving that our method can be considered as a better alternative for n-gram language models.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"24 1","pages":"395-419"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5715/JNLP.24.395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Language modeling is a fundamental research problem that has wide application for many NLP tasks. For estimating probabilities of natural language sentences, most research on language modeling use n-gram based approaches to factor sentence probabilities. However, the assumption under n-gram models is not robust enough to cope with the data sparseness problem, which affects the final performance of language models. In this paper, we propose a generalized hierarchical word sequence framework, where different word association scores can be adopted to rearrange word sequences in a totally unsupervised fashion. Unlike the n-gram which factors sentence probability from left-to-right, our model factors using a more flexible strategy. For evaluation, we compare our rearranged word sequences to normal n-gram word sequences. Both intrinsic and extrinsic experiments verify that our language model can achieve better performance, proving that our method can be considered as a better alternative for n-gram language models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于语言建模的广义层次词序列框架
语言建模是一个基础研究问题,在许多自然语言处理任务中有着广泛的应用。为了估计自然语言句子的概率,大多数语言建模研究都使用基于n-gram的方法来考虑句子的概率。然而,n-gram模型下的假设鲁棒性不足,无法解决数据稀疏性问题,影响了语言模型的最终性能。在本文中,我们提出了一个广义的分层词序列框架,其中不同的词关联分数可以采用完全无监督的方式重新排列词序列。与n-gram从左到右考虑句子概率不同,我们的模型使用了更灵活的策略。为了评估,我们将重新排列的单词序列与正常的n-gram单词序列进行比较。内在实验和外在实验都验证了我们的语言模型可以达到更好的性能,证明我们的方法可以被认为是n-gram语言模型的更好替代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Information Processing
Journal of Information Processing Computer Science-Computer Science (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Container-native Managed Data Sharing Editor's Message to Special Issue of Computer Security Technologies for Secure Cyberspace Understanding the Inconsistencies in the Permissions Mechanism of Web Browsers An Analysis of Susceptibility to Phishing via Business Chat through Online Survey Analysis and Consideration of Detection Methods to Prevent Fraudulent Access by Utilizing Attribute Information and the Access Log History
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1