The Domino Effect: Nucleosome Dynamics and the Regulation of Base Excision Repair Enzymes

Julia C. Cook, S. Delaney
{"title":"The Domino Effect: Nucleosome Dynamics and the Regulation of Base Excision Repair Enzymes","authors":"Julia C. Cook, S. Delaney","doi":"10.3390/dna2040018","DOIUrl":null,"url":null,"abstract":"DNA damage is induced by exogenous and endogenous sources, creating a variety of lesions. However, the cellular repair machinery that addresses and corrects this damage must contend with the fact that genomic DNA is sequestered in the nucleoprotein complex of chromatin. As the minimal unit of DNA compaction, the nucleosome core particle (NCP) is a major determinant of repair and poses unique barriers to DNA accessibility. This review outlines how the base excision repair (BER) pathway is modulated by the NCP and describes the structural and dynamic factors that influence the ability of BER enzymes to find and repair damage. Structural characteristics of the NCP such as nucleobase positioning and occupancy will be explored along with factors that impact the dynamic nature of NCPs to increase mobilization of nucleosomal DNA. We will discuss how altering the dynamics of NCPs initiates a domino effect that results in the regulation of BER enzymes.","PeriodicalId":77708,"journal":{"name":"DNA (Mary Ann Liebert, Inc.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA (Mary Ann Liebert, Inc.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dna2040018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

DNA damage is induced by exogenous and endogenous sources, creating a variety of lesions. However, the cellular repair machinery that addresses and corrects this damage must contend with the fact that genomic DNA is sequestered in the nucleoprotein complex of chromatin. As the minimal unit of DNA compaction, the nucleosome core particle (NCP) is a major determinant of repair and poses unique barriers to DNA accessibility. This review outlines how the base excision repair (BER) pathway is modulated by the NCP and describes the structural and dynamic factors that influence the ability of BER enzymes to find and repair damage. Structural characteristics of the NCP such as nucleobase positioning and occupancy will be explored along with factors that impact the dynamic nature of NCPs to increase mobilization of nucleosomal DNA. We will discuss how altering the dynamics of NCPs initiates a domino effect that results in the regulation of BER enzymes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多米诺效应:核小体动力学与碱基切除修复酶的调节
DNA损伤是由外源和内源性来源引起的,产生了各种各样的损伤。然而,解决和纠正这种损伤的细胞修复机制必须与基因组DNA被隔离在染色质的核蛋白复合物中的事实作斗争。作为DNA压缩的最小单位,核小体核心颗粒(NCP)是修复的主要决定因素,并对DNA的可及性构成独特的障碍。这篇综述概述了NCP如何调节碱基切除修复(BER)途径,并描述了影响BER酶发现和修复损伤能力的结构和动力学因素。将探讨NCP的结构特征,如核碱基定位和占据,以及影响NCP动态性质的因素,以增加核小体DNA的动员。我们将讨论改变NCPs的动力学如何引发多米诺骨牌效应,从而导致BER酶的调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Proteins Specifically Assembled on a Stem-Loop Composed of a CAG Triplet Repeat Kinetic Studies on the 2-Oxoglutarate/Fe(II)-Dependent Nucleic Acid Modifying Enzymes from the AlkB and TET Families. Preimplantation Testing for Polygenic Disease (PGT-P): Brave New World or Mad Pursuit? From Mutation and Repair to Therapeutics Exploration of the DNA Photocleavage Activity of O-Halo-phenyl Carbamoyl Amidoximes: Studies of the UVA-Induced Effects on a Major Crop Pest, the Whitefly Bemisia tabaci
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1