Transformation of 1-D data to 2-D image using stochastic mapping method for secured skin lesion detection

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES Pub Date : 2022-08-24 DOI:10.1080/02522667.2022.2103294
Abhishek Das, M. Mohanty
{"title":"Transformation of 1-D data to 2-D image using stochastic mapping method for secured skin lesion detection","authors":"Abhishek Das, M. Mohanty","doi":"10.1080/02522667.2022.2103294","DOIUrl":null,"url":null,"abstract":"Abstract Mostly accurate medical diagnosis is performed from image data. Some of the complex diseases and their data are available from different gene structures. For detection purposes, the image is the accurate and secured form for analysis. In this work, the gene expressions are converted to 2-D images for further processing. The images are detected using a convolutional neural network. To convert the gene data into image data, encoding mapping through t-Distributed Stochastic Neighbor, Multi-dimensional scaling, and Locally linearly embedding is used. Further, the application of the Convex Hull algorithm forms the fixed boundary. The data set is collected from the Gene expression Omnibus of the NCBI platform. The CNN model provided 96.32% and 92.13% training and testing accuracies that show the effectiveness of data conversion in the field of skin cancer detection.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":"43 1","pages":"1915 - 1923"},"PeriodicalIF":1.1000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02522667.2022.2103294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Mostly accurate medical diagnosis is performed from image data. Some of the complex diseases and their data are available from different gene structures. For detection purposes, the image is the accurate and secured form for analysis. In this work, the gene expressions are converted to 2-D images for further processing. The images are detected using a convolutional neural network. To convert the gene data into image data, encoding mapping through t-Distributed Stochastic Neighbor, Multi-dimensional scaling, and Locally linearly embedding is used. Further, the application of the Convex Hull algorithm forms the fixed boundary. The data set is collected from the Gene expression Omnibus of the NCBI platform. The CNN model provided 96.32% and 92.13% training and testing accuracies that show the effectiveness of data conversion in the field of skin cancer detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机映射方法的一维数据到二维图像的转换,用于安全皮肤损伤检测
摘要大多数准确的医学诊断是根据图像数据进行的。一些复杂的疾病及其数据可以从不同的基因结构中获得。出于检测目的,图像是用于分析的准确且安全的形式。在这项工作中,基因表达被转换为二维图像以进行进一步处理。使用卷积神经网络来检测图像。为了将基因数据转换为图像数据,使用了通过t-分布随机邻居、多维缩放和局部线性嵌入的编码映射。此外,凸壳算法的应用形成了固定边界。数据集是从NCBI平台的基因表达综合库中收集的。CNN模型提供了96.32%和92.13%的训练和测试准确率,显示了数据转换在皮肤癌症检测领域的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
期刊最新文献
Paediatric liver biopsies: A single-centre experience in Erzincan Binali Yıldırım University. An approach to fuzzy transportation problem using Triacontakaidigon fuzzy number with alpha cut ranking technique Credit strategy of micro, small, and medium enterprises with known reputation risk: Evidence from a comprehensive evaluation model Some results on the open subset intersection graph of a product topological space Deep learning for automatic identification of plants through leaf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1