An Adaptive Data-Fitting Model for Speckle Reduction of Log-Compressed Ultrasound Images

IF 1.2 Q2 MATHEMATICS, APPLIED CSIAM Transactions on Applied Mathematics Pub Date : 2020-06-01 DOI:10.4208/csiam-am.2020-0010
Yiming Gao
{"title":"An Adaptive Data-Fitting Model for Speckle Reduction of Log-Compressed Ultrasound Images","authors":"Yiming Gao","doi":"10.4208/csiam-am.2020-0010","DOIUrl":null,"url":null,"abstract":". A good statistical model of speckle formation is useful to design a good speckle reduction model for clinical ultrasound images. We propose a new general distribution to describe the distribution of speckle in clinical ultrasound images accord-ing to a log-compression algorithm of clinical ultrasound imaging. A new variational model is designed to remove the speckle noise with the proposed general distribution. The efficiency of the proposed model is confirmed by experiments on synthetic images and real ultrasound images. Compared with previous variational methods which as-sign a designated distribution, the proposed method is adaptive to remove different kinds of speckle noise by estimating parameters to find suitable distribution. The experiments show that the proposed method can adaptively remove different types of speckle noise.","PeriodicalId":29749,"journal":{"name":"CSIAM Transactions on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSIAM Transactions on Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.2020-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

. A good statistical model of speckle formation is useful to design a good speckle reduction model for clinical ultrasound images. We propose a new general distribution to describe the distribution of speckle in clinical ultrasound images accord-ing to a log-compression algorithm of clinical ultrasound imaging. A new variational model is designed to remove the speckle noise with the proposed general distribution. The efficiency of the proposed model is confirmed by experiments on synthetic images and real ultrasound images. Compared with previous variational methods which as-sign a designated distribution, the proposed method is adaptive to remove different kinds of speckle noise by estimating parameters to find suitable distribution. The experiments show that the proposed method can adaptively remove different types of speckle noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对数压缩超声图像去斑点的自适应数据拟合模型
散斑形成的良好统计模型对于设计用于临床超声图像的良好散斑减少模型是有用的。根据临床超声成像的对数压缩算法,我们提出了一种新的通用分布来描述临床超声图像中散斑的分布。设计了一种新的变分模型来去除具有所提出的一般分布的散斑噪声。通过对合成图像和真实超声图像的实验证实了所提出模型的有效性。与以前作为指定分布符号的变分方法相比,该方法通过估计参数来确定合适的分布,从而自适应地去除不同类型的散斑噪声。实验表明,该方法可以自适应地去除不同类型的散斑噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
期刊最新文献
Flocking Behaviors of a Body Attitude Coordination Model with Velocity Alignment A Novel Lagrange Multiplier Approach with Relaxation for Gradient Flows Hearing the Triangles: A Numerical Perspective Uniform RIP Bounds for Recovery of Signals with Partial Support Information by Weighted $ℓ_p$-Minimization Unconditionally Maximum-Principle-Preserving Parametric Integrating Factor Two-Step Runge-Kutta Schemes for Parabolic Sine-Gordon Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1