The Comparative Study of Deep Learning Neural Network Approaches for Breast Cancer Diagnosis

IF 1.7 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Online and Biomedical Engineering Pub Date : 2023-05-16 DOI:10.3991/ijoe.v19i06.34905
Haslinah Mohd Nasir, Noor Mohd Ariff Brahin, S. Zainuddin, Mohd Syafiq Mispan, Ida Syafiza Binti Md Isa, M. N. A. Sha'abani
{"title":"The Comparative Study of Deep Learning Neural Network Approaches for Breast Cancer Diagnosis","authors":"Haslinah Mohd Nasir, Noor Mohd Ariff Brahin, S. Zainuddin, Mohd Syafiq Mispan, Ida Syafiza Binti Md Isa, M. N. A. Sha'abani","doi":"10.3991/ijoe.v19i06.34905","DOIUrl":null,"url":null,"abstract":"Breast cancer is one of the life threatening cancer that leads to the most death due to cancer among the women. Early diagnosis might help to reduce mortality. Thus, this research aims to study on different approaches of the deep learning neural network model for breast cancer early detection for better prognosis. The performance of deep learning approaches such as Artificial Neural Network (ANN), Recurrent Neural Network (RNN) and Convolution Neural Network (CNN) are evaluated using the dataset from the University of Wisconsin. The findings show ANN achieved high accuracy of 99.9 % compared to others in detecting breast cancer. ANN is able to deliver better results with the provided dataset. However, more improvement needed for better performance to ensure that the approach used is reliable enough for breast cancer early diagnosis.","PeriodicalId":36900,"journal":{"name":"International Journal of Online and Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v19i06.34905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is one of the life threatening cancer that leads to the most death due to cancer among the women. Early diagnosis might help to reduce mortality. Thus, this research aims to study on different approaches of the deep learning neural network model for breast cancer early detection for better prognosis. The performance of deep learning approaches such as Artificial Neural Network (ANN), Recurrent Neural Network (RNN) and Convolution Neural Network (CNN) are evaluated using the dataset from the University of Wisconsin. The findings show ANN achieved high accuracy of 99.9 % compared to others in detecting breast cancer. ANN is able to deliver better results with the provided dataset. However, more improvement needed for better performance to ensure that the approach used is reliable enough for breast cancer early diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习神经网络方法在乳腺癌诊断中的比较研究
癌症是威胁生命的癌症之一,在女性中导致癌症死亡人数最多。早期诊断可能有助于降低死亡率。因此,本研究旨在研究深度学习神经网络模型用于乳腺癌症早期检测的不同方法,以获得更好的预后。使用威斯康星大学的数据集评估了人工神经网络(ANN)、递归神经网络(RNN)和卷积神经网络(CNN)等深度学习方法的性能。研究结果表明,与其他方法相比,人工神经网络检测癌症的准确率高达99.9%。ANN能够利用所提供的数据集提供更好的结果。然而,需要更多的改进才能获得更好的性能,以确保所使用的方法对于乳腺癌症的早期诊断足够可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
46.20%
发文量
143
审稿时长
12 weeks
期刊最新文献
Modification of an IMU Based System for Analyzing Hand Kinematics During Activities of Daily Living 3D Pre-Processing Algorithm for MRI Images of Different Stages of AD Segmentation of Retinal Images Using Improved Segmentation Network, MesU-Net Recent Biomaterial Developments for Bone Tissue Engineering and Potential Clinical Application: Narrative Review of the Literature Brain Tumor Localization Using N-Cut
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1