Actor-critic multi-objective reinforcement learning for non-linear utility functions

IF 2 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Autonomous Agents and Multi-Agent Systems Pub Date : 2023-04-28 DOI:10.1007/s10458-023-09604-x
Mathieu Reymond, Conor F. Hayes, Denis Steckelmacher, Diederik M. Roijers, Ann Nowé
{"title":"Actor-critic multi-objective reinforcement learning for non-linear utility functions","authors":"Mathieu Reymond,&nbsp;Conor F. Hayes,&nbsp;Denis Steckelmacher,&nbsp;Diederik M. Roijers,&nbsp;Ann Nowé","doi":"10.1007/s10458-023-09604-x","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel multi-objective reinforcement learning algorithm that successfully learns the optimal policy even for non-linear utility functions. Non-linear utility functions pose a challenge for SOTA approaches, both in terms of learning efficiency as well as the solution concept. A key insight is that, by proposing a critic that learns a multi-variate distribution over the returns, which is then combined with accumulated rewards, we can directly optimize on the utility function, even if it is non-linear. This allows us to vastly increase the range of problems that can be solved compared to those which can be handled by single-objective methods or multi-objective methods requiring linear utility functions, yet avoiding the need to learn the full Pareto front. We demonstrate our method on multiple multi-objective benchmarks, and show that it learns effectively where baseline approaches fail.\n</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09604-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 7

Abstract

We propose a novel multi-objective reinforcement learning algorithm that successfully learns the optimal policy even for non-linear utility functions. Non-linear utility functions pose a challenge for SOTA approaches, both in terms of learning efficiency as well as the solution concept. A key insight is that, by proposing a critic that learns a multi-variate distribution over the returns, which is then combined with accumulated rewards, we can directly optimize on the utility function, even if it is non-linear. This allows us to vastly increase the range of problems that can be solved compared to those which can be handled by single-objective methods or multi-objective methods requiring linear utility functions, yet avoiding the need to learn the full Pareto front. We demonstrate our method on multiple multi-objective benchmarks, and show that it learns effectively where baseline approaches fail.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性效用函数的行动者-批评家多目标强化学习
我们提出了一种新的多目标强化学习算法,即使对于非线性效用函数,也能成功地学习最优策略。非线性效用函数对SOTA方法提出了挑战,无论是在学习效率还是解决方案概念方面。一个关键的见解是,通过提出一个评论家来学习回报的多变量分布,然后将其与累积奖励相结合,我们可以直接优化效用函数,即使它是非线性的。与需要线性效用函数的单目标方法或多目标方法相比,这使我们能够大大增加可以解决的问题的范围,同时避免了学习完整Pareto前沿的需要。我们在多个多目标基准上演示了我们的方法,并表明它可以有效地学习基准方法失败的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Autonomous Agents and Multi-Agent Systems
Autonomous Agents and Multi-Agent Systems 工程技术-计算机:人工智能
CiteScore
6.00
自引率
5.30%
发文量
48
审稿时长
>12 weeks
期刊介绍: This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to: Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent) Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning. Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems. Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness Significant, novel applications of agent technology Comprehensive reviews and authoritative tutorials of research and practice in agent systems Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.
期刊最新文献
Low variance trust region optimization with independent actors and sequential updates in cooperative multi-agent reinforcement learning An introduction to computational argumentation research from a human argumentation perspective A formal testing method for multi-agent systems using colored Petri nets A multi-level explainability framework for engineering and understanding BDI agents Disagree and commit: degrees of argumentation-based agreements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1