Effects of Thermal Discharge from Coastal Nuclear Power Plants and Thermal Power Plants on the Thermocline Characteristics in Sea Areas with Different Tidal Dynamics
{"title":"Effects of Thermal Discharge from Coastal Nuclear Power Plants and Thermal Power Plants on the Thermocline Characteristics in Sea Areas with Different Tidal Dynamics","authors":"Faming Huang, Jie Lin, B. Zheng","doi":"10.3390/w11122577","DOIUrl":null,"url":null,"abstract":"The thermal discharge from coastal nuclear power plants and thermal power plants (CNATPP) not only increases the water temperature, but it also stratifies the seawater. Comprehending the characteristics of stratification that is caused by thermal discharge constitutes the basis for developing a comprehensive understanding of how thermal discharge affects marine organisms. The spatial and temporal characteristics of seawater stratification induced by thermal discharge were analyzed on the basis of measured data while using two study areas with different tidal dynamics as examples. The results showed the following. (1) Thermal discharge influenced the area within 3 km of the outlet. (2) In the East China Sea (which has strong tidal dynamics), the most significant stratification occurred 0.5 km–1.0 km from the outlet; however, in the South China Sea (which has weak tidal dynamics), the degree of stratification decreased with increasing distance from the outlet. (3) In the East China Sea (i.e., strong tidal dynamics), the depth of the thermocline during ebb tide gradually moved upward, while that during flood tide gradually moved downward, and the opposite was observed in the South China Sea (i.e., weak tidal dynamics). Finally, (4) the thermocline that was caused by thermal discharge mostly occurred at water depths above 7 m.","PeriodicalId":23788,"journal":{"name":"Water","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/w11122577","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w11122577","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 17
Abstract
The thermal discharge from coastal nuclear power plants and thermal power plants (CNATPP) not only increases the water temperature, but it also stratifies the seawater. Comprehending the characteristics of stratification that is caused by thermal discharge constitutes the basis for developing a comprehensive understanding of how thermal discharge affects marine organisms. The spatial and temporal characteristics of seawater stratification induced by thermal discharge were analyzed on the basis of measured data while using two study areas with different tidal dynamics as examples. The results showed the following. (1) Thermal discharge influenced the area within 3 km of the outlet. (2) In the East China Sea (which has strong tidal dynamics), the most significant stratification occurred 0.5 km–1.0 km from the outlet; however, in the South China Sea (which has weak tidal dynamics), the degree of stratification decreased with increasing distance from the outlet. (3) In the East China Sea (i.e., strong tidal dynamics), the depth of the thermocline during ebb tide gradually moved upward, while that during flood tide gradually moved downward, and the opposite was observed in the South China Sea (i.e., weak tidal dynamics). Finally, (4) the thermocline that was caused by thermal discharge mostly occurred at water depths above 7 m.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.