Closed-form estimator for the matrix-variate Gamma distribution

IF 0.4 Q4 STATISTICS & PROBABILITY Theory of Probability and Mathematical Statistics Pub Date : 2021-06-16 DOI:10.1090/TPMS/1138
Gustav Alfelt
{"title":"Closed-form estimator for the matrix-variate Gamma distribution","authors":"Gustav Alfelt","doi":"10.1090/TPMS/1138","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel closed-form estimator for the parameters of the matrixvariate gamma distribution. The estimator relies on the moments of a transformation of the observed matrices, and is compared to the maximum likelihood estimator (MLE) through a simulation study. The study reveals that the suggested estimator outperforms the MLE, in terms of estimation error, when the underlying scale matrix parameter is ill-conditioned or when the shape parameter is close to its lower bound. In addition, since the suggested estimator is closed-form, it does not require numerical optimization as the MLE does, thus needing shorter computation time and is furthermore not subject to start value sensitivity or convergence issues. Finally, using the proposed estimator as start value in the optimization procedure of the MLE is shown to substantially reduce computation time, in comparison to using arbitrary start values.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TPMS/1138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present a novel closed-form estimator for the parameters of the matrixvariate gamma distribution. The estimator relies on the moments of a transformation of the observed matrices, and is compared to the maximum likelihood estimator (MLE) through a simulation study. The study reveals that the suggested estimator outperforms the MLE, in terms of estimation error, when the underlying scale matrix parameter is ill-conditioned or when the shape parameter is close to its lower bound. In addition, since the suggested estimator is closed-form, it does not require numerical optimization as the MLE does, thus needing shorter computation time and is furthermore not subject to start value sensitivity or convergence issues. Finally, using the proposed estimator as start value in the optimization procedure of the MLE is shown to substantially reduce computation time, in comparison to using arbitrary start values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矩阵变量伽玛分布的封闭估计量
本文给出了矩阵变量分布参数的一种新的闭型估计量。该估计量依赖于观测矩阵变换的矩量,并通过仿真研究与极大似然估计量(MLE)进行了比较。研究表明,当底层尺度矩阵参数为病态或形状参数接近其下界时,所提出的估计器在估计误差方面优于MLE。此外,由于建议的估计器是闭型的,因此不需要像MLE那样进行数值优化,因此需要更短的计算时间,并且不受起始值敏感性或收敛性问题的影响。最后,与使用任意起始值相比,在MLE优化过程中使用所提出的估计量作为起始值大大减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
期刊最新文献
Bounded in the mean and stationary solutions of second-order difference equations with operator coefficients Characterization of the least squares estimator: Mis-specified multivariate isotonic regression model with dependent errors Full inference for the anisotropic fractional Brownian field The Burgers-type equation driven by a stochastic measure Temporal properties of the stochastic fractional heat equation with spatially-colored noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1