W. Siedl, P. Strauss, R. Sachsenhofer, M. Harzhauser, T. Kuffner, M. Kranner
{"title":"Revised Badenian (middle Miocene) depositional systems of the Austrian Vienna Basin based on a new sequence stratigraphic framework","authors":"W. Siedl, P. Strauss, R. Sachsenhofer, M. Harzhauser, T. Kuffner, M. Kranner","doi":"10.17738/ajes.2020.0006","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a revised sequence stratigraphy for the lower, middle and upper Badenian depositional systems of the Austrian Vienna Basin based on the integration of 3D seismic surveys and well data. The study area in the central and northern part of the Austrian Vienna Basin is covered with 3D seismic data. According to a new sequence stratigraphic framework established in the southern part of the Vienna Basin, the Badenian is subdivided into three 3rd order depositional sequences. For each sequence, paleogeographic maps are created, representing coeval depositional systems within a chronostrati-graphic interval. Lower Badenian sediments of the 1st sequence (Ba1) represent fillings of the pre-Badenian sub-basins with a major change of sediment transport direction. The early stage of the 1st sequence is dominated by subaerial braided river deposits which use two pronounced canyon systems (Mistelbach Canyon and Reinthal Canyon) on the northwestern margin of the Vienna Basin as a bypass zone towards the marine depositional system of the North Alpine-Carpathian Foredeep. The late stage of the 1st sequence reflects the change from subaerial to marine depositional environments with main sediment influx from the west, creating two major eastwards prograding delta systems (Zistersdorf Delta and Mühlberg Delta). Depositional systems of the middle Badenian 2nd sequence (Ba2) reflect the interplay between ongoing extensional fault tectonics and major sea-level changes. Lower Badenian paleo-highs in the northern part are drowned during the 3rd sequence (Ba3), thus the Mühlberg Delta and the Zistersdorf Delta merge into one delta system. During the Ba3 the drowning of the Spannberg Ridge initiates a clockwise rotation of the Zistersdorf Delta. Thus, the former Zistersdorf Delta transforms into the Matzen Delta covering the Spannberg Ridge. Together with the Mühlberg Delta, they represent the last full marine depositional system of the eastward prograding paleo-Danube Delta in the Austrian Vienna Basin.","PeriodicalId":49319,"journal":{"name":"Austrian Journal of Earth Sciences","volume":"113 1","pages":"87 - 110"},"PeriodicalIF":1.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.17738/ajes.2020.0006","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 16
Abstract
Abstract This paper presents a revised sequence stratigraphy for the lower, middle and upper Badenian depositional systems of the Austrian Vienna Basin based on the integration of 3D seismic surveys and well data. The study area in the central and northern part of the Austrian Vienna Basin is covered with 3D seismic data. According to a new sequence stratigraphic framework established in the southern part of the Vienna Basin, the Badenian is subdivided into three 3rd order depositional sequences. For each sequence, paleogeographic maps are created, representing coeval depositional systems within a chronostrati-graphic interval. Lower Badenian sediments of the 1st sequence (Ba1) represent fillings of the pre-Badenian sub-basins with a major change of sediment transport direction. The early stage of the 1st sequence is dominated by subaerial braided river deposits which use two pronounced canyon systems (Mistelbach Canyon and Reinthal Canyon) on the northwestern margin of the Vienna Basin as a bypass zone towards the marine depositional system of the North Alpine-Carpathian Foredeep. The late stage of the 1st sequence reflects the change from subaerial to marine depositional environments with main sediment influx from the west, creating two major eastwards prograding delta systems (Zistersdorf Delta and Mühlberg Delta). Depositional systems of the middle Badenian 2nd sequence (Ba2) reflect the interplay between ongoing extensional fault tectonics and major sea-level changes. Lower Badenian paleo-highs in the northern part are drowned during the 3rd sequence (Ba3), thus the Mühlberg Delta and the Zistersdorf Delta merge into one delta system. During the Ba3 the drowning of the Spannberg Ridge initiates a clockwise rotation of the Zistersdorf Delta. Thus, the former Zistersdorf Delta transforms into the Matzen Delta covering the Spannberg Ridge. Together with the Mühlberg Delta, they represent the last full marine depositional system of the eastward prograding paleo-Danube Delta in the Austrian Vienna Basin.
期刊介绍:
AUSTRIAN JOURNAL OF EARTH SCIENCES is the official journal of the Austrian Geological, Mineralogical and Palaeontological Societies, hosted by a country that is famous for its spectacular mountains that are the birthplace for many geological and mineralogical concepts in modern Earth science.
AUSTRIAN JOURNAL OF EARTH SCIENCE focuses on all aspects relevant to the geosciences of the Alps, Bohemian Massif and surrounding areas. Contributions on other regions are welcome if they embed their findings into a conceptual framework that relates the contribution to Alpine-type orogens and Alpine regions in general, and are thus relevant to an international audience. Contributions are subject to peer review and editorial control according to SCI guidelines to ensure that the required standard of scientific excellence is maintained.