Random noise attenuation using the novel Estimated Noise Pattern Denoising Algorithm

Pub Date : 2022-11-07 DOI:10.1080/08123985.2022.2140654
Mohammad Iranimehr, M. Riahi, A. Goudarzi
{"title":"Random noise attenuation using the novel Estimated Noise Pattern Denoising Algorithm","authors":"Mohammad Iranimehr, M. Riahi, A. Goudarzi","doi":"10.1080/08123985.2022.2140654","DOIUrl":null,"url":null,"abstract":"This paper introduces the estimated pattern denoising (EPD) wavelet transform for random noise attenuation in geophysical data. The proposed approach combines the capability of the Gaussian filter and dual-tree rational dilation wavelet transform (DT-RADWT) in random noise detection and suppression; we called this method Estimated Pattern Denoising (EPD). The EPD is an innovative approach in terms of estimation of the location and amplitude of the noise pattern, directly from the data. The employed approach produces a higher quality factor (Q-factor) than the conventional dyadic discrete wavelet transform (DWT) and separates the noise from the signal with higher accuracy. The EPD provides a data-driven scheme that resolves the complexity of the random noise model in noise suppression, using an auxiliary Gaussian filter. This approach does not require prior information about the noise source, statistical distribution, or frequency range. We show successful suppression of random noise using the proposed approach on synthetic and real field data.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2022.2140654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces the estimated pattern denoising (EPD) wavelet transform for random noise attenuation in geophysical data. The proposed approach combines the capability of the Gaussian filter and dual-tree rational dilation wavelet transform (DT-RADWT) in random noise detection and suppression; we called this method Estimated Pattern Denoising (EPD). The EPD is an innovative approach in terms of estimation of the location and amplitude of the noise pattern, directly from the data. The employed approach produces a higher quality factor (Q-factor) than the conventional dyadic discrete wavelet transform (DWT) and separates the noise from the signal with higher accuracy. The EPD provides a data-driven scheme that resolves the complexity of the random noise model in noise suppression, using an auxiliary Gaussian filter. This approach does not require prior information about the noise source, statistical distribution, or frequency range. We show successful suppression of random noise using the proposed approach on synthetic and real field data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
一种新的估计噪声模式去噪算法在随机噪声衰减中的应用
本文介绍了用于地球物理数据中随机噪声衰减的估计模式去噪(EPD)小波变换。该方法结合了高斯滤波器和对偶树有理膨胀小波变换(DT-RADWT)在随机噪声检测和抑制方面的能力;我们称这种方法为估计模式去噪(EPD)。EPD是一种直接从数据中估计噪声模式的位置和幅度的创新方法。所采用的方法产生比传统的二进离散小波变换(DWT)更高的质量因子(Q因子),并以更高的精度从信号中分离噪声。EPD提供了一种数据驱动方案,使用辅助高斯滤波器解决了噪声抑制中随机噪声模型的复杂性。这种方法不需要关于噪声源、统计分布或频率范围的先验信息。我们展示了在合成和真实现场数据上使用所提出的方法成功地抑制了随机噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1