Answer Set Programming to Model Plan Agent Scenarios

F. Z. Flores, Rosalba Cuapa Canto, José María Ángeles López
{"title":"Answer Set Programming to Model Plan Agent Scenarios","authors":"F. Z. Flores, Rosalba Cuapa Canto, José María Ángeles López","doi":"10.5121/ijaia.2020.11606","DOIUrl":null,"url":null,"abstract":"One of the most challenging aspects of reasoning, planning, and acting in an agent domain is reasoning about what an agent knows about their environment to consider when planning and acting. There are various proposals that have addressed this problem using modal, epistemic and other logics. In this paper we explore how to take advantage of the properties of Answer Set Programming for this purpose. The Answer Set Programming's property of non-monotonicity allow us to express causality in an elegant fashion. We begin our discussion by showing how Answer Set Programming can be used to model the frog’s problem. We then illustrate how this problem can be represented and solved using these concepts. In addition, our proposal allows us to solve the generalization of this problem, that is, for any number of frogs.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"11 1","pages":"55-63"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2020.11606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most challenging aspects of reasoning, planning, and acting in an agent domain is reasoning about what an agent knows about their environment to consider when planning and acting. There are various proposals that have addressed this problem using modal, epistemic and other logics. In this paper we explore how to take advantage of the properties of Answer Set Programming for this purpose. The Answer Set Programming's property of non-monotonicity allow us to express causality in an elegant fashion. We begin our discussion by showing how Answer Set Programming can be used to model the frog’s problem. We then illustrate how this problem can be represented and solved using these concepts. In addition, our proposal allows us to solve the generalization of this problem, that is, for any number of frogs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回答集编程模型规划座席场景
在代理领域中,推理、计划和行动的最具挑战性的方面之一是推理代理在计划和行动时对其环境的了解。有各种各样的建议已经解决了这个问题,使用模态,认知和其他逻辑。在本文中,我们探讨了如何利用答案集规划的性质来达到这个目的。答案集规划的非单调性使我们能够以一种优雅的方式表达因果关系。我们通过展示如何使用答案集编程来模拟青蛙的问题来开始我们的讨论。然后我们说明如何使用这些概念来表示和解决这个问题。此外,我们的建议允许我们解决这个问题的泛化,也就是说,对于任何数量的青蛙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1