Impacts of disinfected wastewater irrigation on soil characteristics, microbial community composition, and crop yield

IF 2.3 Q3 ENVIRONMENTAL SCIENCES Blue-Green Systems Pub Date : 2022-12-07 DOI:10.2166/bgs.2022.126
Lays Paulino Leonel, Ariane Bize, M. Mariadassou, C. Midoux, Jerusa Schneider, A. L. Tonetti
{"title":"Impacts of disinfected wastewater irrigation on soil characteristics, microbial community composition, and crop yield","authors":"Lays Paulino Leonel, Ariane Bize, M. Mariadassou, C. Midoux, Jerusa Schneider, A. L. Tonetti","doi":"10.2166/bgs.2022.126","DOIUrl":null,"url":null,"abstract":"\n For agricultural reuse, the disinfection treatment must be efficient to inactivate the resistant pathogens and must not generate harmful byproducts for the soil and crop production. Thus, the aim of this work was to evaluate the possible impacts caused by the irrigation with wastewater disinfected with sodium hypochlorite, peracetic acid, ultraviolet radiation, or the oxidation process UV radiation combined with hydrogen peroxide over soil physicochemical properties and microbial community composition, as well as over the wheat crop yield in the short term. A pot essay was performed in a greenhouse, and at the end the main alterations observed in soil physicochemical properties were due to water type, not to the disinfection treatments. The crop yield was influenced by the water type, but not by the disinfectant treatments. Irrigation with wastewater improved almost 5 times the wheat grains yield, compared with freshwater. Wastewater irrigation increased the abundance of families involved in organic matter degradation and nitrogen cycle, and some pathogenic bacteria. Among the disinfectant treatments, the UV disinfection played an important role in shaping soil bacterial community structure.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blue-Green Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/bgs.2022.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

For agricultural reuse, the disinfection treatment must be efficient to inactivate the resistant pathogens and must not generate harmful byproducts for the soil and crop production. Thus, the aim of this work was to evaluate the possible impacts caused by the irrigation with wastewater disinfected with sodium hypochlorite, peracetic acid, ultraviolet radiation, or the oxidation process UV radiation combined with hydrogen peroxide over soil physicochemical properties and microbial community composition, as well as over the wheat crop yield in the short term. A pot essay was performed in a greenhouse, and at the end the main alterations observed in soil physicochemical properties were due to water type, not to the disinfection treatments. The crop yield was influenced by the water type, but not by the disinfectant treatments. Irrigation with wastewater improved almost 5 times the wheat grains yield, compared with freshwater. Wastewater irrigation increased the abundance of families involved in organic matter degradation and nitrogen cycle, and some pathogenic bacteria. Among the disinfectant treatments, the UV disinfection played an important role in shaping soil bacterial community structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
消毒废水灌溉对土壤特性、微生物群落组成和作物产量的影响
对于农业再利用,消毒处理必须有效地灭活耐药病原体,并且不得对土壤和作物生产产生有害的副产品。因此,这项工作的目的是评估用次氯酸钠、过乙酸、紫外线辐射消毒的废水灌溉,或紫外线辐射与过氧化氢结合的氧化过程对土壤物理化学性质和微生物群落组成以及短期内对小麦产量的可能影响。在温室中进行了盆栽试验,最后观察到土壤理化性质的主要变化是由于水的类型,而不是消毒处理。作物产量受水分类型的影响,但不受消毒处理的影响。与淡水灌溉相比,废水灌溉使小麦产量提高了近5倍。废水灌溉增加了参与有机物降解和氮循环的家庭数量,以及一些致病菌。在消毒处理中,紫外线消毒对土壤细菌群落结构的形成起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Blue-Green Systems
Blue-Green Systems Multiple-
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
An integrated framework for waterfront development to recognize nature-based solution (NBS) in urban areas: evaluating the condition of two projects in Bangladesh From shower to table: fate of organic micropollutants in hydroponic systems for greywater treatment and lettuce cultivation Modelling urban stormwater and irrigation management with coupled blue-green infrastructure in the context of climate change Life cycle assessment of ammonium sulfate recovery from urban wastewater Bio-safe drinking water with or without chlorine: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1