Hail-caused greenfall leaves, litterfall, nutrients, and leaf decomposition in tropical cloud forest and a restoration planting

IF 1 4区 环境科学与生态学 Q4 ECOLOGY Journal of Tropical Ecology Pub Date : 2022-12-09 DOI:10.1017/S0266467422000475
G. Williams‐Linera, Javier Tolome, C. Alvarez-Aquino
{"title":"Hail-caused greenfall leaves, litterfall, nutrients, and leaf decomposition in tropical cloud forest and a restoration planting","authors":"G. Williams‐Linera, Javier Tolome, C. Alvarez-Aquino","doi":"10.1017/S0266467422000475","DOIUrl":null,"url":null,"abstract":"Abstract Greenfall leaves caused by hailstorms may represent a resource pulse of nutrients. We determined the contribution of greenfall versus senescent leaves to total litterfall production, carbon, nitrogen and phosphorus input to the system, and leaf decomposition rate. Litterfall was collected monthly for three years in two cloud forests (F1, F2) and a restoration planting area (R) in Veracruz, Mexico. Two fortuitous hailstorms occurred in the second year. Leaf decomposition rate was determined in all three sites but did not differ across them. Total annual litterfall, excluding greenfall, was 10.0, 10.1, and 7.7 Mg ha−1 y−1 for F1, F2, and R, respectively. Senescent leaves represented 65% of the litterfall, while greenfall leaves increased the annual leaf biomass component of the litterfall by 12%. Concentrations of carbon, nitrogen, and phosphorus were 2.3, 5.7, and 18.1% higher, respectively, in greenfall than in senescent leaves. Greenfall increased the annual input of C, N, and P by 12, 13, and 14%, respectively. Despite their short duration (approximately 70 minutes), the hailstorm events generated a substantial contribution of greenfall leaves and a source of extra C, N, and P, since these leaves decompose and are incorporated into the cloud forest system.","PeriodicalId":49968,"journal":{"name":"Journal of Tropical Ecology","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tropical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1017/S0266467422000475","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Greenfall leaves caused by hailstorms may represent a resource pulse of nutrients. We determined the contribution of greenfall versus senescent leaves to total litterfall production, carbon, nitrogen and phosphorus input to the system, and leaf decomposition rate. Litterfall was collected monthly for three years in two cloud forests (F1, F2) and a restoration planting area (R) in Veracruz, Mexico. Two fortuitous hailstorms occurred in the second year. Leaf decomposition rate was determined in all three sites but did not differ across them. Total annual litterfall, excluding greenfall, was 10.0, 10.1, and 7.7 Mg ha−1 y−1 for F1, F2, and R, respectively. Senescent leaves represented 65% of the litterfall, while greenfall leaves increased the annual leaf biomass component of the litterfall by 12%. Concentrations of carbon, nitrogen, and phosphorus were 2.3, 5.7, and 18.1% higher, respectively, in greenfall than in senescent leaves. Greenfall increased the annual input of C, N, and P by 12, 13, and 14%, respectively. Despite their short duration (approximately 70 minutes), the hailstorm events generated a substantial contribution of greenfall leaves and a source of extra C, N, and P, since these leaves decompose and are incorporated into the cloud forest system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热带云雾林中冰雹引起的绿叶、凋落物、营养物质和树叶分解以及恢复种植
摘要冰雹引起的绿叶可能是一种营养物质的资源脉冲。我们测定了绿叶和衰老叶对凋落物总量、系统碳、氮、磷输入和叶片分解速率的贡献。在墨西哥韦拉克鲁斯的两个云雾林(F1, F2)和一个恢复种植区(R),每月收集3年的凋落物。第二年发生了两次偶然的冰雹。叶片分解速率在三个地点均有测定,但在三个地点间没有差异。F1、F2和R的年凋落物总量(不包括绿落物)分别为10.0、10.1和7.7 Mg ha−1 y−1。衰老叶占凋落物的65%,而绿叶使凋落物年生物量组分增加12%。绿落叶的碳、氮、磷含量分别比衰老叶高2.3、5.7和18.1%。绿植使碳、氮和磷的年投入分别增加了12%、13%和14%。尽管持续时间很短(大约70分钟),但冰雹事件产生了大量的绿落叶,并成为额外的C、N和P的来源,因为这些树叶会分解并被纳入云雾林系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Tropical Ecology
Journal of Tropical Ecology 环境科学-生态学
CiteScore
2.10
自引率
0.00%
发文量
44
审稿时长
18-36 weeks
期刊介绍: Journal of Tropical Ecology aims to address topics of general relevance and significance to tropical ecology. This includes sub-disciplines of ecology, such as conservation biology, evolutionary ecology, marine ecology, microbial ecology, molecular ecology, quantitative ecology, etc. Studies in the field of tropical medicine, specifically where it involves ecological surroundings (e.g., zoonotic or vector-borne disease ecology), are also suitable. We also welcome methods papers, provided that the techniques are well-described and are of broad general utility. Please keep in mind that studies focused on specific geographic regions or on particular taxa will be better suited to more specialist journals. In order to help the editors make their decision, in your cover letter please address the specific hypothesis your study addresses, and how the results will interest the broad field of tropical ecology. While we will consider purely descriptive studies of outstanding general interest, the case for them should be made in the cover letter.
期刊最新文献
Climate and vegetation collectively drive soil respiration in montane forest-grassland landscapes of the southern Western Ghats, India Belowground differentiation among trees in a degraded tropical dry forest landscape: no evidence of a collaboration gradient Living in the edge: large terrestrial mammal and bird species traits and the ability to cope with extreme environmental conditions and human disturbance in a tropical dry forest in Colombia Do epiphytes affect the fitness of their phorophytes? The case of Tillandsia recurvata on Bursera copallifera Statistical analysis of species association indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1