Assessment of Surface Runoff for Tank Watershed in Tamil Nadu Using Hydrologic Modeling

IF 1 Q3 GEOCHEMISTRY & GEOPHYSICS International Journal of Geophysics Pub Date : 2018-06-05 DOI:10.1155/2018/2498648
M. Abraham, R. Mathew
{"title":"Assessment of Surface Runoff for Tank Watershed in Tamil Nadu Using Hydrologic Modeling","authors":"M. Abraham, R. Mathew","doi":"10.1155/2018/2498648","DOIUrl":null,"url":null,"abstract":"Providing safe and wholesome water in sufficient quantity on a sustainable basis remains elusive for large population especially in semiarid regions and hence water balance estimation is vital to assess water availability in a watershed. The water balance study is formulated to assess the runoff that can be harvested for effective utilization. The study area is Urapakkam watershed with a chain of 3 tanks having an aerial extent of 4.576 km2 with hard rock formation underneath and thus has limited scope for groundwater recharge. Hence surface water is the main water source in this area. Runoff computed for the watershed using USDA-NRCS model varied from 94.95 mm to 2324.34 mm and the corresponding rainfall varied from 575.7 mm to 3608.0 mm, respectively. A simple regression model was developed for the watershed to compute runoff from annual rainfall. Average annual runoff estimated for the watershed was around 37% of the rainfall for the study period from 2000-01 to 2013-14. Statistical analysis and test of significance for runoff obtained by NRCS model and regression model did not show any significant difference thus proving that regression model is efficient in runoff computation for ungauged basins. The volume of water accessible for fifty percent dependable flow year is obtained as 2.46 MCM and even if 50% of it can be effectively harnessed the water available in the watershed is 1.23 MCM. The water demand of the area is estimated as 0.148 MCM for domestic purpose and 0.171 MCM for irrigation purpose, which is much lower than the available runoff that can be harnessed from the watershed. Thus there is scope to harvest 1.23 MCM of water which is more than the demand of the watershed. The study reveals that it is feasible to harvest and manage water effectively if its availability and demand are computed accurately.","PeriodicalId":45602,"journal":{"name":"International Journal of Geophysics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2498648","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/2498648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

Providing safe and wholesome water in sufficient quantity on a sustainable basis remains elusive for large population especially in semiarid regions and hence water balance estimation is vital to assess water availability in a watershed. The water balance study is formulated to assess the runoff that can be harvested for effective utilization. The study area is Urapakkam watershed with a chain of 3 tanks having an aerial extent of 4.576 km2 with hard rock formation underneath and thus has limited scope for groundwater recharge. Hence surface water is the main water source in this area. Runoff computed for the watershed using USDA-NRCS model varied from 94.95 mm to 2324.34 mm and the corresponding rainfall varied from 575.7 mm to 3608.0 mm, respectively. A simple regression model was developed for the watershed to compute runoff from annual rainfall. Average annual runoff estimated for the watershed was around 37% of the rainfall for the study period from 2000-01 to 2013-14. Statistical analysis and test of significance for runoff obtained by NRCS model and regression model did not show any significant difference thus proving that regression model is efficient in runoff computation for ungauged basins. The volume of water accessible for fifty percent dependable flow year is obtained as 2.46 MCM and even if 50% of it can be effectively harnessed the water available in the watershed is 1.23 MCM. The water demand of the area is estimated as 0.148 MCM for domestic purpose and 0.171 MCM for irrigation purpose, which is much lower than the available runoff that can be harnessed from the watershed. Thus there is scope to harvest 1.23 MCM of water which is more than the demand of the watershed. The study reveals that it is feasible to harvest and manage water effectively if its availability and demand are computed accurately.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用水文模型评价泰米尔纳德邦水库流域地表径流
在可持续的基础上为大量人口提供足够数量的安全和卫生的水仍然是难以实现的,特别是在半干旱地区,因此水平衡估算对于评估流域的水供应至关重要。制定水平衡研究是为了评估可以有效利用的径流。研究区域是Urapakkam流域,该流域有3个储罐链,空中面积为4576平方公里,地下岩层坚硬,因此地下水补给范围有限。因此地表水是该地区的主要水源。USDA-NRCS模型计算的流域径流量变化范围为94.95 ~ 2324.34 mm,相应的降雨量变化范围为575.7 ~ 3608.0 mm。建立了一个简单的回归模型来计算流域年降雨量的径流量。在2000-01年至2013-14年的研究期间,该流域的年平均径流量约为降雨量的37%。NRCS模型与回归模型得到的径流统计分析和显著性检验没有显示出显著差异,从而证明回归模型在未计量流域的径流计算中是有效的。50%可靠流量年可达水量为2.46 MCM,即使50%可有效利用,流域可利用水量为1.23 MCM。据估计,该地区的生活用水需求为0.148 MCM,灌溉用水需求为0.171 MCM,远远低于该流域可利用的径流。因此,有可能收获1.23亿立方米的水,这超过了流域的需求。研究表明,如果对水资源的可利用性和需要量进行准确的计算,有效地收获和管理水资源是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Geophysics
International Journal of Geophysics GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.50
自引率
0.00%
发文量
12
审稿时长
21 weeks
期刊介绍: International Journal of Geophysics is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of theoretical, observational, applied, and computational geophysics.
期刊最新文献
Potential Locations of Strong Earthquakes in Bulgaria and the Neighbouring Regions Preliminary Study of Subsurface Geological Setting Based on the Gravity Anomalies in Karangrejo-Tinatar Geothermal Area, Pacitan Regency, Indonesia Mt. Etna Tilt Signals Associated with February 6, 2023, M=7.8 and M=7.5 Turkey Earthquakes Climate Change Impact on the Trigger of Natural Disasters over South-Eastern Himalayas Foothill Region of Myanmar: Extreme Rainfall Analysis Evaluation of Building Seismic Capacity Based on Improved Naive Bayesian Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1