Zhiqiang Wang, Jiangtao Cao, Xiaoguang Ren, Benyong Zhang, Rihong Ye
{"title":"Comparative Study of the Tribological Properties of CFRPEEK, Stainless and Carbon Steel in High Water-Based Fluid","authors":"Zhiqiang Wang, Jiangtao Cao, Xiaoguang Ren, Benyong Zhang, Rihong Ye","doi":"10.1080/10402004.2023.2244017","DOIUrl":null,"url":null,"abstract":"Abstract The advantageous physical and chemical properties of carbon-fiber-reinforced polyetheretherketone (CFRPEEK) make it a suitable friction pair for water hydraulic components. To explore the selection of friction pair materials, this paper investigated the tribological properties of CFRPEEK, stainless and carbon steel in water and high water-based fluids, and evaluated them using reciprocating friction and wear tester. After the test, the wear surface morphology of the contact surface was observed under an electron microscope. The results show that the degree of friction between specimens is dependent on the load and frequency. Meanwhile, both 316L and CFRPEEK have good tribological properties in both mediums. Microscope observation analysis showed that CFRPEEK surfaces easily absorb water to create a water film, thus improving its performance and reducing wear. Additionally, the friction between stainless and carbon steel in high water-base fluid will generate a lubricating film, the surface of which shows excellent tribological properties. The final conclusion was that the choice of material for plunger pair material depends on the medium, with 304-316L being more suitable for high water-based fluids, while CFRPEEK-316L is more suitable for water.","PeriodicalId":23315,"journal":{"name":"Tribology Transactions","volume":"66 1","pages":"895 - 905"},"PeriodicalIF":2.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Transactions","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10402004.2023.2244017","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The advantageous physical and chemical properties of carbon-fiber-reinforced polyetheretherketone (CFRPEEK) make it a suitable friction pair for water hydraulic components. To explore the selection of friction pair materials, this paper investigated the tribological properties of CFRPEEK, stainless and carbon steel in water and high water-based fluids, and evaluated them using reciprocating friction and wear tester. After the test, the wear surface morphology of the contact surface was observed under an electron microscope. The results show that the degree of friction between specimens is dependent on the load and frequency. Meanwhile, both 316L and CFRPEEK have good tribological properties in both mediums. Microscope observation analysis showed that CFRPEEK surfaces easily absorb water to create a water film, thus improving its performance and reducing wear. Additionally, the friction between stainless and carbon steel in high water-base fluid will generate a lubricating film, the surface of which shows excellent tribological properties. The final conclusion was that the choice of material for plunger pair material depends on the medium, with 304-316L being more suitable for high water-based fluids, while CFRPEEK-316L is more suitable for water.
期刊介绍:
Tribology Transactions contains experimental and theoretical papers on friction, wear, lubricants, lubrication, materials, machines and moving components, from the macro- to the nano-scale.
The papers will be of interest to academic, industrial and government researchers and technologists working in many fields, including:
Aerospace, Agriculture & Forest, Appliances, Automotive, Bearings, Biomedical Devices, Condition Monitoring, Engines, Gears, Industrial Engineering, Lubricants, Lubricant Additives, Magnetic Data Storage, Manufacturing, Marine, Materials, MEMs and NEMs, Mining, Power Generation, Metalworking Fluids, Seals, Surface Engineering and Testing and Analysis.
All submitted manuscripts are subject to initial appraisal by the Editor-in-Chief and, if found suitable for further consideration, are submitted for peer review by independent, anonymous expert referees. All peer review in single blind and submission is online via ScholarOne Manuscripts.