Wind Power Increases the Plant Diversity of Temperate Grasslands but Decreases the Dominance of Palatable Plants

IF 4.2 2区 环境科学与生态学 Q1 ECOLOGY Ecosystem Health and Sustainability Pub Date : 2023-01-01 DOI:10.34133/ehs.0014
Guoxu Ji, Hasbagan Ganjurjav, Guozheng Hu, Zhi-qiang Wan, Peidong Yu, Mingjie Li, Rui Gu, C. Xiao, Qimuge Hashen, Qingzhu Gao
{"title":"Wind Power Increases the Plant Diversity of Temperate Grasslands but Decreases the Dominance of Palatable Plants","authors":"Guoxu Ji, Hasbagan Ganjurjav, Guozheng Hu, Zhi-qiang Wan, Peidong Yu, Mingjie Li, Rui Gu, C. Xiao, Qimuge Hashen, Qingzhu Gao","doi":"10.34133/ehs.0014","DOIUrl":null,"url":null,"abstract":"\n As an important clean energy source, the scale and quantity of wind power have steadily increased under the background of global change. The construction and operation of wind power facilities have massive impacts on grassland microclimates. However, the effect of wind power operation on the plant community composition is still unclear. To investigate this issue, we selected wind farms in 6 meadow grasslands and 6 typical steppes in the central region of Inner Mongolia, the province with the largest scale of grassland wind power operations in China. At these sites, we conducted field sample surveys to obtain species information, measure plant biomass, calculate plant diversity, and take soil samples to determine soil nutrients. The results showed that wind power operation significantly reduced the dominance of\n Poaceae\n and\n Cyperaceae\n plants in both types of grasslands and significantly increased the Shannon diversity of meadow grasslands. The inconsistent responses at each experimental site led to a nonsignificant overall effect of wind power operation on the plant beta diversity. In addition, wind power operation significantly increased plant biomass in meadow grasslands. Wind power operation did not change the soil total carbon, total nitrogen, ammonium nitrogen, or nitrate nitrogen. On the basis of the results, we suggest strengthening the long-term monitoring of temperate grassland plant community composition in wind farms, and replanting of community-building species could be done at appropriate times.\n","PeriodicalId":54216,"journal":{"name":"Ecosystem Health and Sustainability","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosystem Health and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.34133/ehs.0014","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

As an important clean energy source, the scale and quantity of wind power have steadily increased under the background of global change. The construction and operation of wind power facilities have massive impacts on grassland microclimates. However, the effect of wind power operation on the plant community composition is still unclear. To investigate this issue, we selected wind farms in 6 meadow grasslands and 6 typical steppes in the central region of Inner Mongolia, the province with the largest scale of grassland wind power operations in China. At these sites, we conducted field sample surveys to obtain species information, measure plant biomass, calculate plant diversity, and take soil samples to determine soil nutrients. The results showed that wind power operation significantly reduced the dominance of Poaceae and Cyperaceae plants in both types of grasslands and significantly increased the Shannon diversity of meadow grasslands. The inconsistent responses at each experimental site led to a nonsignificant overall effect of wind power operation on the plant beta diversity. In addition, wind power operation significantly increased plant biomass in meadow grasslands. Wind power operation did not change the soil total carbon, total nitrogen, ammonium nitrogen, or nitrate nitrogen. On the basis of the results, we suggest strengthening the long-term monitoring of temperate grassland plant community composition in wind farms, and replanting of community-building species could be done at appropriate times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风力增加了温带草原的植物多样性,但降低了可食性植物的优势
作为一种重要的清洁能源,风电的规模和数量在全球变化的背景下稳步增长。风电设施的建设和运行对草原小气候有着巨大的影响。然而,风电运行对电厂群落组成的影响尚不清楚。为了调查这一问题,我们选择了内蒙古中部地区的6个草甸草原和6个典型草原的风电场,内蒙古是中国草原风电运营规模最大的省份。在这些地点,我们进行了实地抽样调查,以获取物种信息,测量植物生物量,计算植物多样性,并采集土壤样本以确定土壤养分。结果表明,风电运行显著降低了禾本科和莎草科植物在两种草原中的优势地位,显著增加了草甸草原的香农多样性。每个实验点的反应不一致,导致风电运行对植物β多样性的总体影响不显著。此外,风电运行显著增加了草甸草原的植物生物量。风电运行对土壤总碳、总氮、铵态氮或硝态氮无明显影响。在此基础上,我们建议加强对风电场温带草原植物群落组成的长期监测,并在适当的时候重新种植群落建设物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecosystem Health and Sustainability
Ecosystem Health and Sustainability Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.10
自引率
2.00%
发文量
40
审稿时长
22 weeks
期刊介绍: Ecosystem Health and Sustainability publishes articles on advances in ecology and sustainability science, how global environmental change affects ecosystem health, how changes in human activities affect ecosystem conditions, and system-based approaches for applying ecological science in decision-making to promote sustainable development. Papers focus on applying ecological theory, principles, and concepts to support sustainable development, especially in regions undergoing rapid environmental change. Papers on multi-scale, integrative, and interdisciplinary studies, and on international collaborations between scientists from industrialized and industrializing countries are especially welcome. Suitable topics for EHS include: • Global, regional and local studies of international significance • Impact of global or regional environmental change on natural ecosystems • Interdisciplinary research involving integration of natural, social, and behavioral sciences • Science and policy that promote the use of ecological sciences in decision making • Novel or multidisciplinary approaches for solving complex ecological problems • Multi-scale and long-term observations of ecosystem evolution • Development of novel systems approaches or modeling and simulation techniques • Rapid responses to emerging ecological issues.
期刊最新文献
Thinning and managed burning enhance forest resilience in northeastern California Assessing forest ecosystem services in the Greater Khingan Mountains area using remote sensing Spatiotemporal variation in ecosystem health caused by land use and land cover change in Pakistan Integrating multiple diversity and socio-economic criteria in Tibetan felid conservation Regulation of precipitation on soil dissolved organic matter in perturbed mangrove ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1