It Takes Two Flints to Make a Fire: Multitask Learning of Neural Relation and Explanation Classifiers

IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Linguistics Pub Date : 2022-04-25 DOI:10.1162/coli_a_00463
Zheng Tang, M. Surdeanu
{"title":"It Takes Two Flints to Make a Fire: Multitask Learning of Neural Relation and Explanation Classifiers","authors":"Zheng Tang, M. Surdeanu","doi":"10.1162/coli_a_00463","DOIUrl":null,"url":null,"abstract":"We propose an explainable approach for relation extraction that mitigates the tension between generalization and explainability by jointly training for the two goals. Our approach uses a multi-task learning architecture, which jointly trains a classifier for relation extraction, and a sequence model that labels words in the context of the relations that explain the decisions of the relation classifier. We also convert the model outputs to rules to bring global explanations to this approach. This sequence model is trained using a hybrid strategy: supervised, when supervision from pre-existing patterns is available, and semi-supervised otherwise. In the latter situation, we treat the sequence model’s labels as latent variables, and learn the best assignment that maximizes the performance of the relation classifier. We evaluate the proposed approach on the two datasets and show that the sequence model provides labels that serve as accurate explanations for the relation classifier’s decisions, and, importantly, that the joint training generally improves the performance of the relation classifier. We also evaluate the performance of the generated rules and show that the new rules are a great add-on to the manual rules and bring the rule-based system much closer to the neural models.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"49 1","pages":"117-156"},"PeriodicalIF":3.7000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00463","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

We propose an explainable approach for relation extraction that mitigates the tension between generalization and explainability by jointly training for the two goals. Our approach uses a multi-task learning architecture, which jointly trains a classifier for relation extraction, and a sequence model that labels words in the context of the relations that explain the decisions of the relation classifier. We also convert the model outputs to rules to bring global explanations to this approach. This sequence model is trained using a hybrid strategy: supervised, when supervision from pre-existing patterns is available, and semi-supervised otherwise. In the latter situation, we treat the sequence model’s labels as latent variables, and learn the best assignment that maximizes the performance of the relation classifier. We evaluate the proposed approach on the two datasets and show that the sequence model provides labels that serve as accurate explanations for the relation classifier’s decisions, and, importantly, that the joint training generally improves the performance of the relation classifier. We also evaluate the performance of the generated rules and show that the new rules are a great add-on to the manual rules and bring the rule-based system much closer to the neural models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
需要两个弗林特才能生火:神经关系和解释分类器的多任务学习
我们提出了一种可解释的关系提取方法,通过为两个目标联合训练来缓解泛化和可解释性之间的紧张关系。我们的方法使用多任务学习架构,该架构联合训练用于关系提取的分类器,以及在解释关系分类器决策的关系上下文中标记单词的序列模型。我们还将模型输出转换为规则,以对这种方法进行全局解释。该序列模型使用混合策略进行训练:当可以从预先存在的模式进行监督时,进行监督,否则进行半监督。在后一种情况下,我们将序列模型的标签视为潜在变量,并学习最大化关系分类器性能的最佳分配。我们在两个数据集上评估了所提出的方法,并表明序列模型提供的标签可以作为关系分类器决策的准确解释,重要的是,联合训练通常可以提高关系分类器的性能。我们还评估了生成的规则的性能,并表明新规则是手动规则的一个很好的附加项,使基于规则的系统更接近神经模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Linguistics
Computational Linguistics 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.
期刊最新文献
Generation and Polynomial Parsing of Graph Languages with Non-Structural Reentrancies Languages through the Looking Glass of BPE Compression Capturing Fine-Grained Regional Differences in Language Use through Voting Precinct Embeddings Machine Learning for Ancient Languages: A Survey Statistical Methods for Annotation Analysis by Silviu Paun, Ron Artstein, and Massimo Poesio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1