Geological and glacial-hydrologic controls on chemical weathering in the subglacial environment

IF 2.5 4区 地球科学 Q2 GEOGRAPHY, PHYSICAL Annals of Glaciology Pub Date : 2022-09-01 DOI:10.1017/aog.2023.56
J. Graly, Soroush Rezvanbehbahani
{"title":"Geological and glacial-hydrologic controls on chemical weathering in the subglacial environment","authors":"J. Graly, Soroush Rezvanbehbahani","doi":"10.1017/aog.2023.56","DOIUrl":null,"url":null,"abstract":"Abstract A comparison of major ion chemistry of subglacial boreholes and discharging subglacial waters reveals three fundamentally different glacier hydrochemical regimes. Subglacial waters from alpine glaciers have chemistry distinct from the subglacial waters of Greenland or Antarctica. Greenland and Antarctica also differ fundamentally from each other, with Greenland Ice Sheet waters, at least during the summer melt season, remaining dilute and unaffected by saturation reactions and Antarctic Ice Sheet waters controlled by a range of saturation states. Some Antarctic waters form concentrated brines, capable of depressing the freezing point by >10°C. While these waters have only been directly sampled where they rarely emerge, geophysical observations from Devon Ice Cap and Greenland show liquid water at the glacier bed in locations where ice is thin and slowly moving and a cold bed is otherwise expected. This raises the possibility that lithogenic subglacial brines could be widespread and that our existing subglacial hydrochemical measurements might be biased by seasonal sampling of freely discharging water. The potential for diverse ranges of subglacial environments under ice sheets suggests the need for new and ambitious sampling programs to characterize difficult to access subglacial waters and quantify their impact on glacier dynamics, geobiology and global geochemical cycling.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/aog.2023.56","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A comparison of major ion chemistry of subglacial boreholes and discharging subglacial waters reveals three fundamentally different glacier hydrochemical regimes. Subglacial waters from alpine glaciers have chemistry distinct from the subglacial waters of Greenland or Antarctica. Greenland and Antarctica also differ fundamentally from each other, with Greenland Ice Sheet waters, at least during the summer melt season, remaining dilute and unaffected by saturation reactions and Antarctic Ice Sheet waters controlled by a range of saturation states. Some Antarctic waters form concentrated brines, capable of depressing the freezing point by >10°C. While these waters have only been directly sampled where they rarely emerge, geophysical observations from Devon Ice Cap and Greenland show liquid water at the glacier bed in locations where ice is thin and slowly moving and a cold bed is otherwise expected. This raises the possibility that lithogenic subglacial brines could be widespread and that our existing subglacial hydrochemical measurements might be biased by seasonal sampling of freely discharging water. The potential for diverse ranges of subglacial environments under ice sheets suggests the need for new and ambitious sampling programs to characterize difficult to access subglacial waters and quantify their impact on glacier dynamics, geobiology and global geochemical cycling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冰下环境化学风化的地质和冰川水文控制
摘要冰下钻孔和排放冰下水的主要离子化学的比较揭示了三种根本不同的冰川水化学状态。高山冰川的冰下水域具有不同于格陵兰岛或南极洲冰下水域的化学成分。格陵兰岛和南极洲也有根本的不同,格陵兰冰盖的水,至少在夏季融化季节,仍然是稀释的,不受饱和反应的影响,南极冰盖的水受到一系列饱和状态的控制。一些南极水域形成浓缩的盐水,能够将冰点降低>10°C。虽然这些水只是在很少出现的地方直接取样,但德文郡冰盖和格陵兰岛的地球物理观测显示,冰川床上的液态水位于冰薄且缓慢移动的位置,否则预计会出现冷床。这增加了一种可能性,即成因冰下卤水可能广泛存在,并且我们现有的冰下水化学测量可能因自由排水的季节性采样而产生偏差。冰盖下各种各样的冰下环境的潜力表明,需要新的、雄心勃勃的采样计划来表征难以进入的冰下水域,并量化其对冰川动力学、地球生物学和全球地球化学循环的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Glaciology
Annals of Glaciology GEOGRAPHY, PHYSICAL-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
8.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annals of Glaciology publishes original scientific articles and letters in selected aspects of glaciology-the study of ice. Each issue of the Annals is thematic, focussing on a specific subject. The Council of the International Glaciological Society welcomes proposals for thematic issues from the glaciological community. Once a theme is approved, the Council appoints an Associate Chief Editor and a team of Scientific Editors to handle the submission, peer review and publication of papers.
期刊最新文献
Dye tracing of upward brine migration in snow Automated Sentinel-1 ice type mapping and in-situ validation during the CIRFA-22 cruise Cryoconite holes geomorphometry, spatial distribution and radiative impact over the Hells Gate Ice Shelf (East Antarctica) Exploring beneath the retreating ice: Swath bathymetry reveals sub- to proglacial processes and longevity of future Alpine glacial lakes On the effects of the timing of an intense cyclone on summertime sea ice evolution in the Arctic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1