Vehicle Type Recognition based on Dimension Estimation and Bag of Word Classification

R. A. Dehkordi, H. Khosravi
{"title":"Vehicle Type Recognition based on Dimension Estimation and Bag of Word Classification","authors":"R. A. Dehkordi, H. Khosravi","doi":"10.22044/JADM.2020.8375.1975","DOIUrl":null,"url":null,"abstract":"Fine-grained vehicle type recognition is one of the main challenges in machine vision. Almost all of the ways presented so far have identified the type of vehicle with the help of feature extraction and classifiers. Because of the apparent similarity between car classes, these methods may produce erroneous results. This paper presents a methodology that uses two criteria to identify common vehicle types. The first criterion is feature extraction and classification and the second criterion is to use the dimensions of car for classification. This method consists of three phases. In the first phase, the coordinates of the vanishing points are obtained. In the second phase, the bounding box and dimensions are calculated for each passing vehicle. Finally, in the third phase, the exact vehicle type is determined by combining the results of the first and second criteria. To evaluate the proposed method, a dataset of images and videos, prepared by the authors, has been used. This dataset is recorded from places similar to those of a roadside camera. Most existing methods use high-quality images for evaluation and are not applicable in the real world, but in the proposed method real-world video frames are used to determine the exact type of vehicle, and the accuracy of 89.5% is achieved, which represents a good performance.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2020.8375.1975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Fine-grained vehicle type recognition is one of the main challenges in machine vision. Almost all of the ways presented so far have identified the type of vehicle with the help of feature extraction and classifiers. Because of the apparent similarity between car classes, these methods may produce erroneous results. This paper presents a methodology that uses two criteria to identify common vehicle types. The first criterion is feature extraction and classification and the second criterion is to use the dimensions of car for classification. This method consists of three phases. In the first phase, the coordinates of the vanishing points are obtained. In the second phase, the bounding box and dimensions are calculated for each passing vehicle. Finally, in the third phase, the exact vehicle type is determined by combining the results of the first and second criteria. To evaluate the proposed method, a dataset of images and videos, prepared by the authors, has been used. This dataset is recorded from places similar to those of a roadside camera. Most existing methods use high-quality images for evaluation and are not applicable in the real world, but in the proposed method real-world video frames are used to determine the exact type of vehicle, and the accuracy of 89.5% is achieved, which represents a good performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于尺寸估计和词袋分类的车型识别
细粒度车辆类型识别是机器视觉的主要挑战之一。到目前为止,几乎所有提出的方法都是借助特征提取和分类器来识别车辆的类型。由于汽车类之间明显的相似性,这些方法可能产生错误的结果。本文提出了一种使用两个标准来识别常见车辆类型的方法。第一个准则是特征提取和分类,第二个准则是利用汽车的尺寸进行分类。该方法包括三个阶段。在第一阶段,得到消失点的坐标。在第二阶段,计算每辆经过车辆的边界框和尺寸。最后,在第三阶段,结合第一个和第二个标准的结果确定确切的车型。为了评估所提出的方法,使用了作者准备的图像和视频数据集。这个数据集是从类似于路边摄像头的地方记录的。现有的方法大多采用高质量的图像进行评估,并不适用于真实世界,但该方法采用真实世界的视频帧来确定车辆的确切类型,准确率达到89.5%,表现出较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Nasal Breath Input: Exploring Nasal Breath Input Method for Hands-Free Input by Using a Glasses Type Device with Piezoelectric Elements Sentiment Mining and Analysis over Text Corpora via Complex Deep Learning Naural Architectures An Intelligent Model for Prediction of In-Vitro Fertilization Success using MLP Neural Network and GA Optimization Robust Vein Recognition against Rotation Using Kernel Sparse Representation Improving Speed and Efficiency of Dynamic Programming Methods through Chaos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1