Spatially Explicit Abundance Modeling of a Highly Specialized Wetland Bird Using Sentinel-1 and Sentinel-2 Modélisation spatialement explicite de l’abondance d’un oiseau très spécifique aux zones humides à l’aide de Sentinel-1 et de Sentinel-2
{"title":"Spatially Explicit Abundance Modeling of a Highly Specialized Wetland Bird Using Sentinel-1 and Sentinel-2 Modélisation spatialement explicite de l’abondance d’un oiseau très spécifique aux zones humides à l’aide de Sentinel-1 et de Sentinel-2","authors":"L. McLeod, Evan R. DeLancey, Erin M. Bayne","doi":"10.1080/07038992.2021.2014797","DOIUrl":null,"url":null,"abstract":"Abstract Yellow Rail (Coturnicops noveboracensis) are a highly specialized wetland obligate bird. They are a species at risk in Canada and very little is known about their abundance in the wetlands of the western boreal forest. Emerging technologies have enabled us to effectively survey for Yellow Rail and other wetland birds in remote areas by using ground-based remote sensors (autonomous recording units; ARUs) to conduct passive acoustic monitoring. We analyzed bird data from the first four years (2013–2016) of an ongoing monitoring program led by the Bioacoustic Unit at the Alberta Biodiversity Monitoring Institute. We developed species abundance models using satellite data from Sentinel-1 and Sentinel-2 processed in Google Earth Engine. We identified covariates from both synthetic aperture radar and optical remote sensing that had strong predictive capacity for this wetland bird (AUC = 0.96). Approximately 1.5% of available wetland habitat in our northeast Alberta study area was predicted to be highly suitable for Yellow Rail.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"48 1","pages":"37 - 54"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07038992.2021.2014797","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Yellow Rail (Coturnicops noveboracensis) are a highly specialized wetland obligate bird. They are a species at risk in Canada and very little is known about their abundance in the wetlands of the western boreal forest. Emerging technologies have enabled us to effectively survey for Yellow Rail and other wetland birds in remote areas by using ground-based remote sensors (autonomous recording units; ARUs) to conduct passive acoustic monitoring. We analyzed bird data from the first four years (2013–2016) of an ongoing monitoring program led by the Bioacoustic Unit at the Alberta Biodiversity Monitoring Institute. We developed species abundance models using satellite data from Sentinel-1 and Sentinel-2 processed in Google Earth Engine. We identified covariates from both synthetic aperture radar and optical remote sensing that had strong predictive capacity for this wetland bird (AUC = 0.96). Approximately 1.5% of available wetland habitat in our northeast Alberta study area was predicted to be highly suitable for Yellow Rail.
期刊介绍:
Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT).
Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.