Praseodymium-oxide decorated montmorillonite nanocomposite as a novel admixture for dredged soil stabilisation

Falk Ayub, S. Khan, Sarmishta Rudra Paul
{"title":"Praseodymium-oxide decorated montmorillonite nanocomposite as a novel admixture for dredged soil stabilisation","authors":"Falk Ayub, S. Khan, Sarmishta Rudra Paul","doi":"10.1080/17486025.2022.2099019","DOIUrl":null,"url":null,"abstract":"ABSTRACT Herein a novel nanocomposite, Praseodymium oxide-nano montmorillonite (Pr-nMMT)was fabricated and explored as stabilising admixture for enhancing the strength of dredged soils. The compaction, permeability, direct shear, california bearing ratio (CBR), and unconfined compressive strength (UCS) tests performed on the dredged soil samples collected from the Shalimar site along the Dal Lake Srinagar rendered it unsuitable as construction material and needed stabilisation before using it as a building material. Different percentages of Pr-nMMT (0.25–1%) were used for stabilisation purposes and it revealed that the addition of Pr-nMMT to soil increased maximum dry density (MDD), shear strength parameters (angle of internal friction and cohesion), CBR, and decreased optimum moisture content (OMC), plasticity index, and hydraulic conductivity. The UCS enhanced notably with Pr-nMMT content and increment in curing time. The optimum Pr-nMMT content determined was 0.5% as it demonstrated the maximum value of UCS at 0, 7 and 14 days of curing beyond which the strength showed a declining trend. It was anticipated that Pr-nMMT filled pores between soil particles, therefore resisting sliding among soil particles and thus increasing the strength of treated dredged soil. The results portray Pr-nMMT as an efficient nano admixture for the stabilisation of dredged soil.","PeriodicalId":46470,"journal":{"name":"Geomechanics and Geoengineering-An International Journal","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geoengineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17486025.2022.2099019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Herein a novel nanocomposite, Praseodymium oxide-nano montmorillonite (Pr-nMMT)was fabricated and explored as stabilising admixture for enhancing the strength of dredged soils. The compaction, permeability, direct shear, california bearing ratio (CBR), and unconfined compressive strength (UCS) tests performed on the dredged soil samples collected from the Shalimar site along the Dal Lake Srinagar rendered it unsuitable as construction material and needed stabilisation before using it as a building material. Different percentages of Pr-nMMT (0.25–1%) were used for stabilisation purposes and it revealed that the addition of Pr-nMMT to soil increased maximum dry density (MDD), shear strength parameters (angle of internal friction and cohesion), CBR, and decreased optimum moisture content (OMC), plasticity index, and hydraulic conductivity. The UCS enhanced notably with Pr-nMMT content and increment in curing time. The optimum Pr-nMMT content determined was 0.5% as it demonstrated the maximum value of UCS at 0, 7 and 14 days of curing beyond which the strength showed a declining trend. It was anticipated that Pr-nMMT filled pores between soil particles, therefore resisting sliding among soil particles and thus increasing the strength of treated dredged soil. The results portray Pr-nMMT as an efficient nano admixture for the stabilisation of dredged soil.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化镨修饰蒙脱土纳米复合材料用于疏浚土稳定的新型掺合料
本文制备了一种新型纳米复合材料——氧化镨-纳米蒙脱土(Pr-nMMT),并对其作为增强疏浚土强度的稳定掺合料进行了探索。对从斯利那加达尔湖沿岸的Shalimar工地收集的疏浚土壤样本进行的压实、渗透性、直接剪切、加州承载比(CBR)和无侧压抗压强度(UCS)测试表明,它不适合作为建筑材料,在用作建筑材料之前需要进行稳定。不同比例的Pr-nMMT(0.25-1%)用于稳定目的,结果表明,Pr-nMMT添加到土壤中增加了最大干密度(MDD)、抗剪强度参数(内摩擦角和黏聚角)、CBR,降低了最佳含水率(OMC)、塑性指数和水力导率。随着Pr-nMMT含量的增加和固化时间的延长,UCS显著增强。确定的最佳Pr-nMMT含量为0.5%,表明固化0、7和14 d时的UCS最大值,超过此值强度呈下降趋势。预计Pr-nMMT填充土粒之间的孔隙,从而抵抗土粒之间的滑动,从而提高处理后的疏浚土的强度。结果表明,Pr-nMMT是一种有效的稳定疏浚土的纳米掺合料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
27
期刊介绍: Geomechanics is concerned with the application of the principle of mechanics to earth-materials (namely geo-material). Geoengineering covers a wide range of engineering disciplines related to geo-materials, such as foundation engineering, slope engineering, tunnelling, rock engineering, engineering geology and geo-environmental engineering. Geomechanics and Geoengineering is a major publication channel for research in the areas of soil and rock mechanics, geotechnical and geological engineering, engineering geology, geo-environmental engineering and all geo-material related engineering and science disciplines. The Journal provides an international forum for the exchange of innovative ideas, especially between researchers in Asia and the rest of the world.
期刊最新文献
Analytical evaluation of partially stiffened granular piled raft with the effect of rigidity of bearing stratum A parametric study on deformation behaviour for design of braced excavation in soft clay Effect of leachate and used motor oil on the geotechnical and mechanical characteristics of soils with different mineralogy under different moisture conditions Influence of edge distance on experimental p-y curves for piles near slope Performance of loosely skirted square footing resting on reinforced sand under vertical concentric and eccentric loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1