{"title":"Case Study: Mechanism and Effect Analysis of Presplitting Blasting in Shallow Extra-Thick Coal Seam","authors":"Q. Sun, Cheng Shan, Zhongya Wu, Yunbo Wang","doi":"10.24425/ams.2022.142406","DOIUrl":null,"url":null,"abstract":"The caving effect of the top coal caving is crucial for efficient mining. using the yushuling coal mine, Xinjiang province, China, as a case study, the coal and rock physical and mechanical parameters, such as the compressive, tensile, and shear strength values and hardness of the top coal and roof rock, were determined. The analysis of the effect of different factors on the blasting presplitting process was numerically simulated, and the optimal parameters of blast drilling were identified. Three presplit boreholes were implemented: in the workface, the workface’s advance area, and the two roadway roofs in the workface’s advance area. The optimal blasting drilling parameters and charge structure were designed. The field test results in the mine under study indicated that the top coal recovery rate of the 110501 fully mechanised top coal caving face was improved twice (from 40 to more than 80%), and an effective blasting presplitting was achieved. The proposed blasting presplitting method has an important guiding significance for fully mechanised top coal caving mining in Xinjiang and similar mining areas.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/ams.2022.142406","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1
Abstract
The caving effect of the top coal caving is crucial for efficient mining. using the yushuling coal mine, Xinjiang province, China, as a case study, the coal and rock physical and mechanical parameters, such as the compressive, tensile, and shear strength values and hardness of the top coal and roof rock, were determined. The analysis of the effect of different factors on the blasting presplitting process was numerically simulated, and the optimal parameters of blast drilling were identified. Three presplit boreholes were implemented: in the workface, the workface’s advance area, and the two roadway roofs in the workface’s advance area. The optimal blasting drilling parameters and charge structure were designed. The field test results in the mine under study indicated that the top coal recovery rate of the 110501 fully mechanised top coal caving face was improved twice (from 40 to more than 80%), and an effective blasting presplitting was achieved. The proposed blasting presplitting method has an important guiding significance for fully mechanised top coal caving mining in Xinjiang and similar mining areas.
期刊介绍:
Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in:
mining technologies,
mineral processing,
stability of mine workings,
mining machine science,
ventilation systems,
rock mechanics,
termodynamics,
underground storage of oil and gas,
mining and engineering geology,
geotechnical engineering,
tunnelling,
design and construction of tunnels,
design and construction on mining areas,
mining geodesy,
environmental protection in mining,
revitalisation of postindustrial areas.
Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.