Case Study: Mechanism and Effect Analysis of Presplitting Blasting in Shallow Extra-Thick Coal Seam

IF 1.2 4区 工程技术 Q3 MINING & MINERAL PROCESSING Archives of Mining Sciences Pub Date : 2023-07-20 DOI:10.24425/ams.2022.142406
Q. Sun, Cheng Shan, Zhongya Wu, Yunbo Wang
{"title":"Case Study: Mechanism and Effect Analysis of Presplitting Blasting in Shallow Extra-Thick Coal Seam","authors":"Q. Sun, Cheng Shan, Zhongya Wu, Yunbo Wang","doi":"10.24425/ams.2022.142406","DOIUrl":null,"url":null,"abstract":"The caving effect of the top coal caving is crucial for efficient mining. using the yushuling coal mine, Xinjiang province, China, as a case study, the coal and rock physical and mechanical parameters, such as the compressive, tensile, and shear strength values and hardness of the top coal and roof rock, were determined. The analysis of the effect of different factors on the blasting presplitting process was numerically simulated, and the optimal parameters of blast drilling were identified. Three presplit boreholes were implemented: in the workface, the workface’s advance area, and the two roadway roofs in the workface’s advance area. The optimal blasting drilling parameters and charge structure were designed. The field test results in the mine under study indicated that the top coal recovery rate of the 110501 fully mechanised top coal caving face was improved twice (from 40 to more than 80%), and an effective blasting presplitting was achieved. The proposed blasting presplitting method has an important guiding significance for fully mechanised top coal caving mining in Xinjiang and similar mining areas.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/ams.2022.142406","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1

Abstract

The caving effect of the top coal caving is crucial for efficient mining. using the yushuling coal mine, Xinjiang province, China, as a case study, the coal and rock physical and mechanical parameters, such as the compressive, tensile, and shear strength values and hardness of the top coal and roof rock, were determined. The analysis of the effect of different factors on the blasting presplitting process was numerically simulated, and the optimal parameters of blast drilling were identified. Three presplit boreholes were implemented: in the workface, the workface’s advance area, and the two roadway roofs in the workface’s advance area. The optimal blasting drilling parameters and charge structure were designed. The field test results in the mine under study indicated that the top coal recovery rate of the 110501 fully mechanised top coal caving face was improved twice (from 40 to more than 80%), and an effective blasting presplitting was achieved. The proposed blasting presplitting method has an important guiding significance for fully mechanised top coal caving mining in Xinjiang and similar mining areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实例研究:浅埋特厚煤层预裂爆破机理及效果分析
顶煤冒落的冒落效果是保证高效开采的关键。以新疆榆树岭煤矿为例,测定了煤岩的物理力学参数,如顶煤和顶板的抗压、抗拉、抗剪强度值和硬度。对不同因素对爆破预裂过程的影响进行了数值模拟,确定了爆破钻孔的最佳参数。实施了三个预裂钻孔:在工作面、工作面推进区和工作面推进区域的两个巷道顶板。设计了最佳的爆破钻孔参数和装药结构。现场试验结果表明,110501综放工作面顶煤回采率提高了两倍(由40%提高到80%以上),实现了有效的爆破预裂。提出的爆破预裂方法对新疆及类似矿区的综放开采具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Mining Sciences
Archives of Mining Sciences 工程技术-矿业与矿物加工
CiteScore
2.40
自引率
16.70%
发文量
0
审稿时长
20 months
期刊介绍: Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in: mining technologies, mineral processing, stability of mine workings, mining machine science, ventilation systems, rock mechanics, termodynamics, underground storage of oil and gas, mining and engineering geology, geotechnical engineering, tunnelling, design and construction of tunnels, design and construction on mining areas, mining geodesy, environmental protection in mining, revitalisation of postindustrial areas. Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.
期刊最新文献
Experimental Study of Lignite Structure Evolution Characteristics and Mechanisms under Thermal-Mechanical Co-function Landslide Survey at Cam Mountain (An Giang, Vietnam) by Seismic Refraction and GPR Methods Comparative Testing of Cable Bolt and Wire Rope Lacing Resistance to Static and Dynamic Loads Experimental Study on the Slime Flotation Process of Low-Rank Steam Coal by the Small Cone Angle Hydrocyclone Group Field Testing of the Methods for Prevention and Control of Coal and Gas Outburst – A Case Study in Poland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1