{"title":"Empirical mode decomposition approach for delineating gas-hydrates and free gas in Mahanadi offshore, eastern Indian margin","authors":"Jitender Kumar, K. Sain","doi":"10.1080/08123985.2022.2043125","DOIUrl":null,"url":null,"abstract":"Empirical mode decomposition (EMD) is an effective tool for signal analysis that splits the data into individual modes, called the intrinsic mode functions, which are associated with symmetric and narrow-band waveform ensuring that the instantaneous frequencies are smooth and positive. However, some negative features encumber its direct application namely the mode mixing and splitting, aliasing and endpoint artefacts. Two variants, ensemble EMD (EEMD) and complete ensemble EMD (CEEMD) have been recently introduced to overcome these problems. We intend to show the application of the EMD for demarcating the zones of gas-hydrates and free-gas bearing sediments. Gas-hydrates are ice-like crystalline substances that occur in shallow sediments along the outer continental margins and in the permafrost regions, and are considered as viable major future energy resources of the world. Gas-hydrates in marine environment are generally identified by an anomalous reflector, known as the bottom simulating reflector, on seismic section. The present study demonstrates that the EMD can be effectively utilised in demarcating the zones of gas-hydrates and free-gas bearing sediments with a field example in the Mahanadi basin of the eastern Indian margin.","PeriodicalId":50460,"journal":{"name":"Exploration Geophysics","volume":"54 1","pages":"88 - 100"},"PeriodicalIF":0.6000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2022.2043125","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Empirical mode decomposition (EMD) is an effective tool for signal analysis that splits the data into individual modes, called the intrinsic mode functions, which are associated with symmetric and narrow-band waveform ensuring that the instantaneous frequencies are smooth and positive. However, some negative features encumber its direct application namely the mode mixing and splitting, aliasing and endpoint artefacts. Two variants, ensemble EMD (EEMD) and complete ensemble EMD (CEEMD) have been recently introduced to overcome these problems. We intend to show the application of the EMD for demarcating the zones of gas-hydrates and free-gas bearing sediments. Gas-hydrates are ice-like crystalline substances that occur in shallow sediments along the outer continental margins and in the permafrost regions, and are considered as viable major future energy resources of the world. Gas-hydrates in marine environment are generally identified by an anomalous reflector, known as the bottom simulating reflector, on seismic section. The present study demonstrates that the EMD can be effectively utilised in demarcating the zones of gas-hydrates and free-gas bearing sediments with a field example in the Mahanadi basin of the eastern Indian margin.
期刊介绍:
Exploration Geophysics is published on behalf of the Australian Society of Exploration Geophysicists (ASEG), Society of Exploration Geophysics of Japan (SEGJ), and Korean Society of Earth and Exploration Geophysicists (KSEG).
The journal presents significant case histories, advances in data interpretation, and theoretical developments resulting from original research in exploration and applied geophysics. Papers that may have implications for field practice in Australia, even if they report work from other continents, will be welcome. ´Exploration and applied geophysics´ will be interpreted broadly by the editors, so that geotechnical and environmental studies are by no means precluded.
Papers are expected to be of a high standard. Exploration Geophysics uses an international pool of reviewers drawn from industry and academic authorities as selected by the editorial panel.
The journal provides a common meeting ground for geophysicists active in either field studies or basic research.